
Boolean Circuits: a quick introduction

Charles Paperman, University of Lille

June 2020

A Boolean circuit

𝑎 𝑏 𝑐

∧ ∨ ¬

¬¬

∧ ∧ ∧

∨

A Boolean circuit

𝑎 𝑏 𝑐

∧ ∨ ¬

¬¬

∧ ∧ ∧

∨

𝑎, 𝑏, 𝑐 ∈ {0, 1}

A Boolean circuit

𝑎 𝑏 𝑐

∧ ∨ ¬

¬¬

∧ ∧ ∧

∨

∧ ≡ All inputs must be one

A Boolean circuit

𝑎 𝑏 𝑐

∧ ∨ ¬

¬¬

∧ ∧ ∧

∨

∨ ≡ Some input must be one

A Boolean circuit

𝑎 𝑏 𝑐

∧ ∨ ¬

¬¬

∧ ∧ ∧

∨

¬ ≡ Negates its input

A Boolean circuit

1 0 1

∧ ∨ ¬

¬¬

∧ ∧ ∧

∨

A Boolean circuit

1 0 1

0 1 0

¬¬

∧ ∧ ∧

∨

A Boolean circuit

1 0 1

0 1 0

01

∧ ∧ ∧

∨

A Boolean circuit

1 0 1

0 1 0

01

1 0 0

∨

A Boolean circuit

1 0 1

0 1 0

01

1 0 0

1

A Boolean circuit

𝑎 𝑏 𝑐

∧ ∨ ¬

¬¬

∧ ∧ ∧

∨

Evaluate to 1 iff 𝑎 ⊕ 𝑏 = 𝑐

Historical notes

1854 Simple mathematical reasoning requires few (simple) operations (Bool)

1936 Formalization of Turing Machine (Turing)

1937 Boolean algebra provides an abstraction of digital circuits design (Shannon)

1948 First transistor at Bell labs (John Bardeen, Walter Brattain, and William Shockley)

1958 First integrated circuit (Robert Noyce and Jack Kilby)

1965 Moore’s Law

1971 The 4004 Intel processor (2250 transistors)

2019 AMD Ryzen 9 processor (10 billions transistors)

Boolean algebra

𝑋𝑛 = {𝑥1, … , 𝑥𝑛} a set of Boolean variables (taking values in {0, 1}).

Basic operations:
• ∧ (AND)
• ∨ (OR)
• ⊕ (XOR)
• ¬ (NOT)

∧ ∧ ∧

∧

∨

¬ ¬ ¬

𝑥1 𝑥2 𝑥3

Compute {0, 1}3 ∩ 0∗10∗.

Boolean algebra

𝑋𝑛 = {𝑥1, … , 𝑥𝑛} a set of Boolean variables (taking values in {0, 1}).

Basic operations:
• ∧ (AND)
• ∨ (OR)
• ⊕ (XOR)
• ¬ (NOT)

∧ ∧ ∧

∧

∨

¬ ¬ ¬

𝑥1 𝑥2 𝑥3

Compute {0, 1}3 ∩ 0∗10∗.

Boolean algebra

𝑋𝑛 = {𝑥1, … , 𝑥𝑛} a set of Boolean variables (taking values in {0, 1}).

Basic operations:
• ∧ (AND)
• ∨ (OR)
• ⊕ (XOR)
• ¬ (NOT)

∧ ∧ ∧

∧

∨

¬ ¬ ¬

𝑥1 𝑥2 𝑥3

Compute {0, 1}3 ∩ 0∗10∗.

Boolean computation: Terms and Circuits

Terms

∧ ∧

∨

∨

∨

𝑥1 𝑥1𝑥2 𝑥2

𝑥3 𝑥4

Equivalent to
((𝑥1 or 𝑥2) and 𝑥3) or ((𝑥1 and 𝑥2) or 𝑥4)

Circuits

∧ ∧

∨

∨

𝑥1 𝑥2

𝑥3 𝑥4

Equivalent to
(𝑦 and 𝑥3) or (𝑦 or 𝑥4) with 𝑦 = 𝑥1 or 𝑥2.

Circuits are factorized trees.

Boolean computation: Terms and Circuits

Terms

∧ ∧

∨

∨

∨

𝑥1 𝑥1𝑥2 𝑥2

𝑥3 𝑥4

Equivalent to
((𝑥1 or 𝑥2) and 𝑥3) or ((𝑥1 and 𝑥2) or 𝑥4)

Circuits

∧ ∧

∨

∨

𝑥1 𝑥2

𝑥3 𝑥4

Equivalent to
(𝑦 and 𝑥3) or (𝑦 or 𝑥4) with 𝑦 = 𝑥1 or 𝑥2.

Circuits are factorized trees.

Boolean computation: Terms and Circuits

Terms

∧ ∧

∨

∨

∨

𝑥1 𝑥1𝑥2 𝑥2

𝑥3 𝑥4

Equivalent to
((𝑥1 or 𝑥2) and 𝑥3) or ((𝑥1 and 𝑥2) or 𝑥4)

Circuits

∧ ∧

∨

∨

𝑥1 𝑥2

𝑥3 𝑥4

Equivalent to
(𝑦 and 𝑥3) or (𝑦 or 𝑥4) with 𝑦 = 𝑥1 or 𝑥2.

Circuits are factorized trees.

Boolean computation: Terms and Circuits

Terms

∧ ∧

∨

∨

∨

𝑥1 𝑥1𝑥2 𝑥2

𝑥3 𝑥4

Equivalent to
((𝑥1 or 𝑥2) and 𝑥3) or ((𝑥1 and 𝑥2) or 𝑥4)

Circuits

∧ ∧

∨

∨

𝑥1 𝑥2

𝑥3 𝑥4

Equivalent to
(𝑦 and 𝑥3) or (𝑦 or 𝑥4) with 𝑦 = 𝑥1 or 𝑥2.

Circuits are factorized trees.

Small exercises

Exercice 1.
Any functions 𝑓 ∶ {0, 1}𝑛 → {0, 1} can be computed by Boolean terms.

⋁
𝑓(𝑢)=1

⋀
𝑢𝑖=1

𝑥𝑖 ∧ ⋀
𝑢𝑖=0

¬𝑥𝑖

Exercice 2.
Any function computed by a Boolean circuit can be computed by a Boolean term.

Simply by unfolding the circuits.

Small exercises

Exercice 1.
Any functions 𝑓 ∶ {0, 1}𝑛 → {0, 1} can be computed by Boolean terms.

⋁
𝑓(𝑢)=1

⋀
𝑢𝑖=1

𝑥𝑖 ∧ ⋀
𝑢𝑖=0

¬𝑥𝑖

Exercice 2.
Any function computed by a Boolean circuit can be computed by a Boolean term.

Simply by unfolding the circuits.

Small exercises

Exercice 1.
Any functions 𝑓 ∶ {0, 1}𝑛 → {0, 1} can be computed by Boolean terms.

⋁
𝑓(𝑢)=1

⋀
𝑢𝑖=1

𝑥𝑖 ∧ ⋀
𝑢𝑖=0

¬𝑥𝑖

Exercice 2.
Any function computed by a Boolean circuit can be computed by a Boolean term.

Simply by unfolding the circuits.

Small exercises

Exercice 1.
Any functions 𝑓 ∶ {0, 1}𝑛 → {0, 1} can be computed by Boolean terms.

⋁
𝑓(𝑢)=1

⋀
𝑢𝑖=1

𝑥𝑖 ∧ ⋀
𝑢𝑖=0

¬𝑥𝑖

Exercice 2.
Any function computed by a Boolean circuit can be computed by a Boolean term.

Simply by unfolding the circuits.

Shannon master Thesis

A Symbolic Analysis of Relay and Switching Circuits. Shannon, MIT 1937.

Main contribution:

1. The arrangement of Electrical switch can be improved by using Boolean algebra reasoning.

2. Electrical switch can be used to execute Boolean circuits.

One of the first appearance of computational complexity!

https://doi.org/10.1109%2FT-AIEE.1938.5057767

Electronic and Boolean complexity

Electronic synthesis: process of turning an abstract specification of some computations into a
working electronic design. Ultimately, the goal is to obtained the most efficient electronic layout.

What efficiency means?
• Size of the design

→ number of gates

• Speed of stabilization

→ depth of the circuits

• Power consumption

→ number of wires

All those electronic parameters can be translated into Boolean circuits parameters.

https://en.wikipedia.org/wiki/Logic_synthesis

Electronic and Boolean complexity

Electronic synthesis: process of turning an abstract specification of some computations into a
working electronic design. Ultimately, the goal is to obtained the most efficient electronic layout.

What efficiency means?
• Size of the design → number of gates
• Speed of stabilization → depth of the circuits
• Power consumption → number of wires

All those electronic parameters can be translated into Boolean circuits parameters.

https://en.wikipedia.org/wiki/Logic_synthesis

Classical complexity to Boolean realm

Classical complexity to Boolean realm

Classical complexity to Boolean realm

classical complexity focus on the number of loop and memory used by the algorithm.

Classical complexity to Boolean realm

classical complexity focus on the number of loop and memory used by the algorithm.

Classical complexity to Boolean realm

Classical complexity to Boolean realm

Classical complexity to Boolean realm

Summary

• Boolean complexity cares about Boolean circuits resources to perform computation
• Boolean complexity provides model-free notion of complexity
• Boolean complexity is linked to parallel complexity

Boolean Circuits Complexity

Remark.
Circuits have no memory model: they recognize finite subset of 2𝑋𝑛 , for some 𝑛.

What Boolean complexity means when we care only of a finite subset?

An example: adding numbers

ADD𝑛 is the function {0, 1}2𝑛 → {0, 1}𝑛+1 performing the addition on standard binary
encoding of numbers on 𝑛-bits.

Exercice 3.
Using what you learn in middle school, prove that ADD𝑛 is computable by a circuit with 𝒪(𝑛)
gates and 𝒪(𝑛) depth.

Simply unroll the middle school classical algorithm.

An example: adding numbers

ADD𝑛 is the function {0, 1}2𝑛 → {0, 1}𝑛+1 performing the addition on standard binary
encoding of numbers on 𝑛-bits.

Exercice 3.
Using what you learn in middle school, prove that ADD𝑛 is computable by a circuit with 𝒪(𝑛)
gates and 𝒪(𝑛) depth.

Simply unroll the middle school classical algorithm.

A weird example: middle of inputs

Middle𝑛 is the function (language) {0, 1}2𝑛+1 → {0, 1} that map to 1 all words in
{0, 1}𝑛 × {1} × {0, 1}𝑛.

Exercice 4.
Prove that Middle𝑛 is computable by a circuit with only one gate.

Select the input 𝑥𝑛+1 as output.

A weird example: middle of inputs

Middle𝑛 is the function (language) {0, 1}2𝑛+1 → {0, 1} that map to 1 all words in
{0, 1}𝑛 × {1} × {0, 1}𝑛.

Exercice 4.
Prove that Middle𝑛 is computable by a circuit with only one gate.

Select the input 𝑥𝑛+1 as output.

Boolean circuits complexity: a formal definition

Definition.
Let (𝑟𝑛)𝑛∈ℕ be positive integers,
and (𝑓𝑛)𝑛∈ℕ be functions s.t. 𝑓𝑛 ∶ {0, 1}𝑛 → {0, 1}𝑟𝑛 .

For 𝑔 ∶ ℕ → ℕ, we say that (𝑓𝑛) has a circuit-size 𝒪(𝑔(𝑛)) if their exists a circuits family (𝐶𝑛)
such that 𝐶𝑛 computes 𝑓𝑛 and |𝐶𝑛| ∈ 𝒪(𝑔(𝑛)).

Similarly we can define the circuit-depth complexity or alternative notion by changing the set of
considered gates.

Remark.
It is a non uniform notion of complexity ... and it makes sense.

Exercice 5.
Propose a constant-complexity sequence of functions which is not Turing decidable

Boolean circuits complexity: a formal definition

Definition.
Let (𝑟𝑛)𝑛∈ℕ be positive integers,
and (𝑓𝑛)𝑛∈ℕ be functions s.t. 𝑓𝑛 ∶ {0, 1}𝑛 → {0, 1}𝑟𝑛 .

For 𝑔 ∶ ℕ → ℕ, we say that (𝑓𝑛) has a circuit-size 𝒪(𝑔(𝑛)) if their exists a circuits family (𝐶𝑛)
such that 𝐶𝑛 computes 𝑓𝑛 and |𝐶𝑛| ∈ 𝒪(𝑔(𝑛)).

Similarly we can define the circuit-depth complexity or alternative notion by changing the set of
considered gates.

Remark.
It is a non uniform notion of complexity ...

and it makes sense.

Exercice 5.
Propose a constant-complexity sequence of functions which is not Turing decidable

Boolean circuits complexity: a formal definition

Definition.
Let (𝑟𝑛)𝑛∈ℕ be positive integers,
and (𝑓𝑛)𝑛∈ℕ be functions s.t. 𝑓𝑛 ∶ {0, 1}𝑛 → {0, 1}𝑟𝑛 .

For 𝑔 ∶ ℕ → ℕ, we say that (𝑓𝑛) has a circuit-size 𝒪(𝑔(𝑛)) if their exists a circuits family (𝐶𝑛)
such that 𝐶𝑛 computes 𝑓𝑛 and |𝐶𝑛| ∈ 𝒪(𝑔(𝑛)).

Similarly we can define the circuit-depth complexity or alternative notion by changing the set of
considered gates.

Remark.
It is a non uniform notion of complexity ... and it makes sense.

Exercice 5.
Propose a constant-complexity sequence of functions which is not Turing decidable

Boolean circuits complexity: a formal definition

Definition.
Let (𝑟𝑛)𝑛∈ℕ be positive integers,
and (𝑓𝑛)𝑛∈ℕ be functions s.t. 𝑓𝑛 ∶ {0, 1}𝑛 → {0, 1}𝑟𝑛 .

For 𝑔 ∶ ℕ → ℕ, we say that (𝑓𝑛) has a circuit-size 𝒪(𝑔(𝑛)) if their exists a circuits family (𝐶𝑛)
such that 𝐶𝑛 computes 𝑓𝑛 and |𝐶𝑛| ∈ 𝒪(𝑔(𝑛)).

Similarly we can define the circuit-depth complexity or alternative notion by changing the set of
considered gates.

Remark.
It is a non uniform notion of complexity ... and it makes sense.

Exercice 5.
Propose a constant-complexity sequence of functions which is not Turing decidable

Boolean circuits complexity: a formal definition

Definition.
Let (𝑟𝑛)𝑛∈ℕ be positive integers,
and (𝑓𝑛)𝑛∈ℕ be functions s.t. 𝑓𝑛 ∶ {0, 1}𝑛 → {0, 1}𝑟𝑛 .

For 𝑔 ∶ ℕ → ℕ, we say that (𝑓𝑛) has a circuit-size 𝒪(𝑔(𝑛)) if their exists a circuits family (𝐶𝑛)
such that 𝐶𝑛 computes 𝑓𝑛 and |𝐶𝑛| ∈ 𝒪(𝑔(𝑛)).

Similarly we can define the circuit-depth complexity or alternative notion by changing the set of
considered gates.

Remark.
It is a non uniform notion of complexity ... and it makes sense.

Exercice 5.
Propose a constant-complexity sequence of functions which is not Turing decidable

Boolean circuits complexity: a formal definition

Definition.
Let (𝑟𝑛)𝑛∈ℕ be positive integers,
and (𝑓𝑛)𝑛∈ℕ be functions s.t. 𝑓𝑛 ∶ {0, 1}𝑛 → {0, 1}𝑟𝑛 .

For 𝑔 ∶ ℕ → ℕ, we say that (𝑓𝑛) has a circuit-size 𝒪(𝑔(𝑛)) if their exists a circuits family (𝐶𝑛)
such that 𝐶𝑛 computes 𝑓𝑛 and |𝐶𝑛| ∈ 𝒪(𝑔(𝑛)).

Similarly we can define the circuit-depth complexity or alternative notion by changing the set of
considered gates.

Remark.
It is a non uniform notion of complexity ... and it makes sense.

Exercice 5.
Propose a constant-complexity sequence of functions which is not Turing decidable

Note on uniformity of Boolean classes

It is possible to add constraint on the way circuits classes are produces to lift the non-uniformity.

→ To know more see Sipser’s Book: Introduction to the Theory of Computation (chapter 10.
Section Uniform Boolean circuits)

http://www-math.mit.edu/~sipser/book.html

Some important classes

• P/poly: functions computable by polysize circuits.
• AC𝑖: functions computable by polysize circuits and 𝒪(𝑙𝑜𝑔𝑖(𝑛)) depth.
• NC𝑖: functions computable by bounded arity polysize circuits and 𝒪(𝑙𝑜𝑔𝑖(𝑛)) depth.
• AC = ⋃𝑖 AC𝑖 and NC = ⋃𝑖 NC𝑖

Some important classes

• P/poly: functions computable by polysize circuits.
• AC𝑖: functions computable by polysize circuits and 𝒪(𝑙𝑜𝑔𝑖(𝑛)) depth.
• NC𝑖: functions computable by bounded arity polysize circuits and 𝒪(𝑙𝑜𝑔𝑖(𝑛)) depth.
• AC = ⋃𝑖 AC𝑖 and NC = ⋃𝑖 NC𝑖

Some facts on P/poly

Exercice 6.
Prove that P is in P/poly

The following facts can be found with references in the complexity Zoo.

• Can also be define as P-machine with polysize advices.
• If it does not contains NP, then P ≠ NP
• If it does contains PSPACE, then PSPACE collapse to the Σ2 ∩ Π2

Exercice 7.
Proves that some function/language are not in P/poly

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:P#ppoly

Some facts on P/poly

Exercice 6.
Prove that P is in P/poly

The following facts can be found with references in the complexity Zoo.

• Can also be define as P-machine with polysize advices.
• If it does not contains NP, then P ≠ NP
• If it does contains PSPACE, then PSPACE collapse to the Σ2 ∩ Π2

Exercice 7.
Proves that some function/language are not in P/poly

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:P#ppoly

Some facts on P/poly

Exercice 6.
Prove that P is in P/poly

The following facts can be found with references in the complexity Zoo.

• Can also be define as P-machine with polysize advices.
• If it does not contains NP, then P ≠ NP
• If it does contains PSPACE, then PSPACE collapse to the Σ2 ∩ Π2

Exercice 7.
Proves that some function/language are not in P/poly

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:P#ppoly

Some facts on P/poly

Exercice 6.
Prove that P is in P/poly

The following facts can be found with references in the complexity Zoo.

• Can also be define as P-machine with polysize advices.
• If it does not contains NP, then P ≠ NP
• If it does contains PSPACE, then PSPACE collapse to the Σ2 ∩ Π2

Exercice 7.
Proves that some function/language are not in P/poly

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:P#ppoly

Some facts on the NC hierarchy
• Worst name for a complexity class (Nick Class).
• Known as the classes of parallel computations.
• Strictness is a long standing open question.
• Not much is known ...

Exercice 8.
Prove that AC𝑖 ⊆ NC𝑖+1. Deduce that AC = NC and that Boolean matrix multiplication is in
NC2

Exercice 9.
Prove that NC0 does not compute the language 1∗.

Some facts on the NC hierarchy
• Worst name for a complexity class (Nick Class).
• Known as the classes of parallel computations.
• Strictness is a long standing open question.
• Not much is known ...

Exercice 8.
Prove that AC𝑖 ⊆ NC𝑖+1. Deduce that AC = NC and that Boolean matrix multiplication is in
NC2

Exercice 9.
Prove that NC0 does not compute the language 1∗.

Some facts on the NC hierarchy
• Worst name for a complexity class (Nick Class).
• Known as the classes of parallel computations.
• Strictness is a long standing open question.
• Not much is known ...

Exercice 8.
Prove that AC𝑖 ⊆ NC𝑖+1. Deduce that AC = NC and that Boolean matrix multiplication is in
NC2

Exercice 9.
Prove that NC0 does not compute the language 1∗.

Some facts about NC1

Unlike other, a lot is known about NC1.
• The class of divides and conquers algorithms
• Contains all regular languages (and much more)
• Regular languages are actually complete for NC1.
• Look at Barrington’s Theorem.

Exercice 10.
Prove that Integer multiplication is in NC1

Exercice 11.
Prove that Dyck languages are in NC1

https://en.wikipedia.org/wiki/NC_(complexity)#Barrington's_theorem

Some facts about NC1

Unlike other, a lot is known about NC1.
• The class of divides and conquers algorithms
• Contains all regular languages (and much more)
• Regular languages are actually complete for NC1.
• Look at Barrington’s Theorem.

Exercice 10.
Prove that Integer multiplication is in NC1

Exercice 11.
Prove that Dyck languages are in NC1

https://en.wikipedia.org/wiki/NC_(complexity)#Barrington's_theorem

Some facts about NC1

Unlike other, a lot is known about NC1.
• The class of divides and conquers algorithms
• Contains all regular languages (and much more)
• Regular languages are actually complete for NC1.
• Look at Barrington’s Theorem.

Exercice 10.
Prove that Integer multiplication is in NC1

Exercice 11.
Prove that Dyck languages are in NC1

https://en.wikipedia.org/wiki/NC_(complexity)#Barrington's_theorem

Some facts about AC0

• The class of highly efficiently parallelizable computation.
• Match with reasonnable fragment of SQL (see Conjunctive query).
• One of the few actual class with actual lower-bound known: Parity ∉ AC0 is a classical

result (see Arora ans Barak book).

Exercice 12.
Prove that (ADD𝑛) is in AC0

Proving that (ADD𝑛) is not computable by linear size circuits of AC0 is a long standing open
problem

https://en.wikipedia.org/wiki/Conjunctive_query
http://theory.cs.princeton.edu/complexity/book.pdf

Some facts about AC0

• The class of highly efficiently parallelizable computation.
• Match with reasonnable fragment of SQL (see Conjunctive query).
• One of the few actual class with actual lower-bound known: Parity ∉ AC0 is a classical

result (see Arora ans Barak book).

Exercice 12.
Prove that (ADD𝑛) is in AC0

Proving that (ADD𝑛) is not computable by linear size circuits of AC0 is a long standing open
problem

https://en.wikipedia.org/wiki/Conjunctive_query
http://theory.cs.princeton.edu/complexity/book.pdf

Some facts about AC0

• The class of highly efficiently parallelizable computation.
• Match with reasonnable fragment of SQL (see Conjunctive query).
• One of the few actual class with actual lower-bound known: Parity ∉ AC0 is a classical

result (see Arora ans Barak book).

Exercice 12.
Prove that (ADD𝑛) is in AC0

Proving that (ADD𝑛) is not computable by linear size circuits of AC0 is a long standing open
problem

https://en.wikipedia.org/wiki/Conjunctive_query
http://theory.cs.princeton.edu/complexity/book.pdf

