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Abstract. We study Monadic Second-Order Logic (MSO) over finite
words, extended with (non-uniform arbitrary) monadic predicates. We
show that it defines a class of languages that has algebraic, automata-
theoretic and machine-independent characterizations. We consider the
regularity question: given a language in this class, when is it regular?
To answer this, we show a substitution property and the existence of a
syntactical predicate.

We give three applications. The first two are to give simple proofs of
the Straubing and Crane Beach Conjectures for monadic predicates, and
the third is to show that it is decidable whether a language defined by
an MSO formula with morphic predicates is regular.

1 Introduction

The Monadic Second-Order Logic (MSO) over finite words equipped with the
linear ordering on positions is a well-studied and understood logic. It provides
a mathematical framework for applications in many areas such as program ver-
ification, database and linguistics. In 1962, Büchi [5] proved the decidability of
the satisfiability problem for MSO formulae.

Uniform Monadic Predicates. In 1966, Elgot and Rabin [9] considered ex-
tensions of MSO with uniform monadic predicates. For instance, the following
formula

∀x, a(x) ⇐⇒ x is prime,

describes the set of finite words such that the letters a appear exactly in prime
positions. The predicate “x is a prime number” is a uniform monadic predicate
on the positions, it can be seen as a subset of N.

Elgot and Rabin were interested in the following question: for a uniform
monadic predicate P ⊆ N, is the satisfiability problem of MSO[≤,P] decid-
able? A series of papers gave tighter conditions on P, culminating to two fi-
nal answers: in 1984, Semenov [19] gave a characterization of the predicates P
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E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 279–290, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



280 N. Fijalkow and C. Paperman

such that MSO[≤,P] is decidable, and in 2006, Rabinovich and Thomas [15,17]
proved that it is equivalent to the predicate P being effectively profinitely ulti-
mately periodic.

Further questions on uniform monadic predicates have been investigated. For
instance, Rabinovich [16] gave a solution to the Church synthesis problem for
MSO[≤,P], for a large class of predicates P.

In this paper, we consider non-uniform monadic predicates: such a predicate
P is given, for each length n ∈ N, by a predicate over the n first positions
Pn ⊆ {0, . . . , n − 1}. The set M of these predicates contains the set Munif of
uniform monadic predicates.

Advice Regular Languages. We say that a language is advice regular if
it is definable in MSO[≤,M]. No computability assumptions are made on the
monadic predicates, so this class contains undecidable languages.

Our first contribution is to give equivalent presentations of this class, which
is a Boolean algebra extending the class of regular languages:

1. It has an equivalent automaton model: automata with advice.
2. It has an equivalent algebraic model: one-scan programs.
3. It has a machine-independent characterization, based on generalizations of

Myhill-Nerode equivalence relations.

This extends the equivalence between automata with advice and Myhill-Nerode
equivalence relations proved in [12] for the special case of uniform monadic pred-
icates. We will rely on those characterizations to obtain several properties of the
advice regular languages. Our main goal is the following regularity question:
given an advice regular language L, when is L regular? To answer this question,
we introduce two notions:

– The substitution property, which states that if a formula ϕ together with
the predicate P defines a regular language Lϕ,P, then there exists a regular
predicate Q such that Lϕ,Q = Lϕ,P.

– The syntactical predicate of a language L, which is the “simplest” predicate
PL such that L ∈MSO[≤,PL].

Our second contribution is to show that the class of advice regular languages
has the substitution property, and that an advice regular language L is regular
if and only if PL is regular.

We apply these results to the case of morphic predicates [6], and obtain the
following decidability result: given a language defined by an MSO formula with
morphic predicates, one can decide whether it is regular.

Motivations from Circuit Complexity. Extending logics with predicates
also appears in the context of circuit complexity. Indeed, a descriptive complexity
theory initiated by Immermann [10] relates logics and circuits; it shows that a
language is recognized by a Boolean circuit of constant depth and unlimited
fan-in if and only if it can be described by a first-order formula with predicates
(of any arity, so not only monadic ones), i.e. AC0 = FO[N ].
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This correspondence led to the study of two properties, which amount to
characterize the regular languages (Straubing Conjecture) and the languages
with a neutral letter (Crane Beach Conjecture) in several fragments of FO[N ].
The Straubing Conjecture would, if true, give a deep understanding of many
complexity classes inside NC1. Many cases of this conjecture are still open.
On the other side, unfortunately the Crane Beach Conjecture does not hold
in general, as shown by Barrington, Immermann, Lautemann, Schweikardt and
Thérien [3]. On the positive side, both conjectures hold for uniform monadic
predicates [3,20].

Our third contribution is to give simple proofs of the both the Straubing and
the Crane Beach Conjectures for monadic predicates relying on our previous
characterizations.

Outline. The Section 2 gives characterizations of advice regular languages, in
automata-theoretic, algebraic and machine-independent terms. In Section 3, we
study the regularity question, and give two different answers: one through the
substitution property, and the other through the existence of a syntactical predi-
cate. The last section, Section 4, provides applications of our results: easy proofs
that the Straubing and the Crane Beach Conjectures hold for monadic predicates
and decidability of the regularity problem for morphic regular languages.

2 Advice Regular Languages

In this section, we introduce the class of advice regular languages and give several
characterizations.

Predicates. A monadic predicate P is given by P = (Pn)n∈N, where Pn ⊆
{0, . . . , n − 1}. Since we mostly deal with monadic predicates, we often drop
the word “monadic”. In this definition the predicates are non-uniform: for each
length n there is a predicate Pn, and no assumption is made on the relation
between Pn and Pn′ for n �= n′. A predicate P is uniform if there exists Q ⊆ N
such that for every n, Pn = Q ∩ {0, . . . , n − 1}. We identify P and Q, and see
uniform predicates as subsets of N.

For the sake of readability, we often define predicates as P = (Pn)n∈N with
Pn ⊆ {0, 1}n. In such case we can see P as a language over {0, 1}, which contains
exactly one word for each length. Also, we often define predicates P = (Pn)n∈N

with Pn ∈ An for some finite alphabet A. This is not formally a predicate, but
this amounts to define one predicate Pa for each letter a in A, with Pa

n(i) = 1
if and only if Pn(i) = a. This abuse of notations will prove very convenient.
Similarly, any infinite word w ∈ Aω can be seen as a uniform predicate.

Monadic Second-Order Logic. The formulae we consider are monadic second-
order (MSO) formulae, obtained from the following grammar:

ϕ = a(x) | x ≤ y | P (x) | ϕ ∧ ϕ | ¬ϕ | ∃x, ϕ | ∃X, ϕ
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Here x, y, z, . . . are first-order variables, which will be interpreted by positions
in the word, and X,Y, Z, . . . are monadic second-order variables, which will in-
terpreted by sets of positions in the word. We say that a is a letter symbol, ≤
the ordering symbol and P,Q, . . . are the numerical monadic predicate symbols,
often refered to as predicate symbols.

The notation ϕ(P 1, . . . , P �, x1, . . . , xn, X1, . . . , Xp) means that in ϕ, the pred-
icate symbols are among P 1, . . . , P �, the free first-order variables are among
x1, . . . , xn and the free second-order variables are among X1, . . . , Xp. A formula
without free variables is called a sentence.

We use the notation P to abbreviate P 1, . . . , P �, and similarly for all objects
(variables, predicate symbols, predicates).

We now define the semantics. The letter symbols and the ordering symbol are
always interpreted in the same way, as expected. For the predicate symbols, the
predicate symbol P is interpreted by a predicate P. Note that P is a syntactic
object, while P is a predicate used as the interpretation of P .

Consider ϕ(P , x,X) a formula, u a finite word of length n, P predicates inter-
preting the predicate symbols from P , x valuation of the free first-order variables
and X valuation of the free second-order variables. We define u,P,x,X |= ϕ by
induction as usual, with

u,P,x,X |= P (y) if y ∈ Pn .

A sentence ϕ(P ) and a tuple of predicates P interpreting the predicate sym-
bols from P define a language

Lϕ,P = {u ∈ A∗ | u,P |= ϕ} .

Such a language is called advice regular, and the class of advice regular languages
is denoted by MSO[≤,M].

Automata with Advice. We introduce automata with advice. Unlike classical
automata, they have access to two more pieces of information about the word
being read: its length and the current position. Both the transitions and the
final states can depend on those two pieces of information. For this reason, they
are (much) more expressive than classical automata, and recognize undecidable
languages.

A non-deterministic automaton with advice is given byA = (Q, q0, δ, F ) where
Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ N×N×Q×A×Q is the
transition relation and F ⊆ N×Q is the set of final states. In the deterministic
case δ : N× N×Q×A→ Q.

A run over a finite word u = u0 · · ·un−1 ∈ A∗ is a finite word ρ = q0 · · · qn ∈
Q∗ such that for all i ∈ {0, . . . , n − 1}, we have (i, n, qi, ui, qi+1) ∈ δ. It is
accepting if (n, qn) ∈ F .

One obtains a uniform model by removing one piece of information in the
transition function: the length of the word. This automaton model is strictly
weaker, and is (easily proved to be) equivalent to the one introduced in [12],
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where the automata read at the same time the input word and a fixed word
called the advice. However, our definition will be better suited for some technical
aspects: for instance, the number of Myhill-Nerode equivalence classes exactly
correspond to the number of states in a minimal deterministic automaton.

qa qb qc qF

⊥

a

(3n, n− 1)

c

(3n, 3n− 1)

b

(3n, 2n− 1)

3n

n prime

ca b

b, c

a, c a, b

a, b, c

a, b, c

Fig. 1. The automaton for Example 2.1

Example 2.1. The language {anbncn | n is a prime number} is recognized by a
(deterministic) automaton with advice. The automaton is represented in figure 1.
It has five states, qa, qb, qc, qF and ⊥. The initial state is qa. The transition
function is defined as follows:

δ(i, 3n, qa, a) = qa if i < n− 1
δ(n− 1, 3n, qa, a) = qb
δ(i, 3n, qb, b) = qb if n ≤ i < 2n− 1
δ(2n− 1, 3n, qb, c) = qc
δ(i, 3n, qc, c) = qc if 2n ≤ i < 3n− 1
δ(3n− 1, 3n, qc, c) = qF

All other transitions lead to ⊥, the sink rejecting state. The set of final states is
F = {(3n, qF ) | n is a prime number}.

We mention another example, that appeared in the context of automatic struc-
tures [13]. They show that the structure (Q,+) is automatic with advice, which
amounts to show that the language {x̂ ' ŷ ' ẑ | z = x + y}, where x̂ denotes the
factorial representation of the rational x, is advice regular.

One-scan Programs. Programs over monoids were introduced in the context
of circuit complexity [1]: Barrington showed that any language in NC1 can be
computed by a program of polynomial length over a non-solvable group. Here
we present a simplification introduced in [20], adapted to the context of monadic
predicates.

A one-scan program is given by P = (M, (fi,n : A→M)i,n∈N, S) where M is
a finite monoid and S ⊆M . The function fi,n is used to compute the effect of the
ith letter of an input word of length n. The program P accepts u = u0 · · ·un−1

if f0,n(u0) · · · fn−1,n(un−1) ∈ S.
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Note that this echoes the classical definition of recognition by monoids, where
a morphism f : A → M into a finite monoid M recognizes the word u =
u0 · · ·un−1 if f(u0) · · · f(un−1) ∈ S. Here, a one-scan program uses different
functions fi,n, depending on the position i and the length of the word n.

Myhill-Nerode Equivalence Relations. Let L ⊆ A∗ and p ∈ N, we define
two equivalence relations:

– u ∼L v if for all w ∈ A∗, we have uw ∈ L⇐⇒ vw ∈ L,
– u ∼L,p v if for all w ∈ Ap, we have uw ∈ L⇐⇒ vw ∈ L.

The relation ∼L is called the (classical) Myhill-Nerode equivalence relation. Re-
call that ∼L contains finitely many equivalence classes if and only if L is regular,
i.e. L ∈MSO[≤].

Theorem 2.2 (Advice Regular Languages). Let L be a language of finite
words, the following properties are equivalent:

(1) L ∈MSO[≤,M],
(2) L is recognized by a non-deterministic automaton with advice,
(3) L is recognized by a deterministic automaton with advice,
(4) There exists K ∈ N such that for all i, p ∈ N, the restriction of ∼L,p to words

of length i contains at most K equivalence classes.
(5) L is recognized by a one-scan program,

In such case, we say that L is advice regular.

This extends the Myhill-Nerode theorem proposed in [12], which proves the
equivalence between (3) and (4) for uniform predicates.

3 The Regularity Question

In this section, we address the following question: given an advice regular lan-
guage, when is it regular? We answer this question in two different ways: first
by showing a substitution property, and second by proving the existence of a
syntactical predicate.

Note that the regularity question is not a decision problem, as advice regular
languages are not finitely presentable, so we can only provide (non-effective)
characterizations of regular languages inside the advice regular languages.

In the next section, we will show how these two notions answer the regularity
question: first by proving that the Straubing property holds in this case, and
second by proving the decidability of the regularity problem for morphic regular
languages.
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3.1 A Substitution Property

In this subsection, we prove a substitution property for MSO[≤,M].
We say that a predicate P = (Pn)n∈N is regular if the language P ⊆ {0, 1}∗ is

regular, defining the class Reg1 of regular monadic predicates (as defined in [14]
and in [20]).

Theorem 3.1. For all sentences ϕ(P ) in MSO[≤,M] and predicates P ∈ M
such that Lϕ,P is regular, there exist Q ∈ Reg1 such that Lϕ,Q = Lϕ,P.

The main idea of the proof is that among all predicates Q such that Lϕ,P =
Lϕ,Q, there is a minimal one with respect to a lexicographic ordering, which can
be defined by an MSO formula. The key technical point is given by the following
lemma, which can be understood as a regular choice function.

Lemma 3.2 (Regular Choice Lemma). Let M be a regular language such
that for all k ∈ N, there exists a word w ∈ M of length k. Then there exists
M ′ ⊆ M a regular language such that for all k ∈ N, there exists exactly one
word w ∈M ′ of length k.

3.2 The Syntactical Predicate

In this subsection, we define the notion of syntactical predicate for an advice
regular language. The word “syntactical” here should be understood in the fol-
lowing sense: the syntactical predicate PL of L is the most regular predicate
that describes the language L. In particular, we will prove that L is regular if
and only if PL is regular.

Let L be an advice regular language. We define the predicate PL = (PL,n)n∈N.
Thanks to Theorem 2.2, there exists K ∈ N such that for all i, p ∈ N, the
restriction of ∼L,p to words of length i contains at most K equivalence classes.
Denote Q = {1, . . . ,K} and Σ = (Q × A → Q) � Q, where Q × A → Q is the
set of (partial) functions from Q×A to Q. We define PL,n ∈ Σn.

Let i, n ∈ N. Among all words of length i, we denote by ui,n
1 , ui,n

2 , . . . the
lexicographically minimal representants of the equivalence classes of ∼L,n−i,
enumerated in the lexicographic order:

ui,n
1 <lex ui,n

2 <lex ui,n
3 <lex . . . (1)

In other words, ui,n
� is minimal with respect to the lexicographic order <lex

among all words of length i in its equivalence class for ∼L,n−i. Thanks to The-
orem 2.2, there are at most K such words for each i, n ∈ N.

We define PL,n(i) (the ith letter of PL,n) by:

PL,n(i)(�, a) = k if ui,n
� · a ∼L,n−i−1 ui+1,n

k , for i < n (2)

PL,n(n− 1)(�) if un,n
� ∈ L . (3)

Intuitively, the predicate PL describes the transition function with respect to
the equivalence relations ∼L,p. We now give an example.
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Fig. 2. The predicate PL (here PL,4) for L = (ab)∗ + (ba)∗b

Example 3.3. Consider the language L = (ab)∗ + (ba)∗b. We represent PL,4 in
figure 2. Each circle represents an equivalence class with respect to ∼L,4, inside
words of a given length. For instance, there are three equivalence classes for
words of length 3: a3, aba and bab. Note that these three words are the minimal
representants of their equivalence classes with respect to the lexicographic order.
For the last position (here 3), the equivalence class of (ab)2 (which is actually
reduced to (ab)2 itself) is darker since it belongs to the language L.

Theorem 3.4. Let L be an advice regular language. Then L is regular if and
only if PL is regular.

The proof is split in two lemmas, giving each direction.

Lemma 3.5. Let L be an advice regular language. Then L ∈MSO[≤,PL].

Lemma 3.6. Let L be an advice regular language defined with the predicates P.
Then PL ∈MSO[≤,P].

4 Applications

In this section we show several consequences of Theorem 2.2 (characterization of
the advice regular languages), Theorem 3.1 (a substitution property for advice
regular languages) and Theorem 3.4 (a syntactical predicate for advice regular
predicates).

The first two applications are about two conjectures, the Straubing and the
Crane Beach Conjectures, introduced in the context of circuit complexity. We
first explain the motivations for these two conjectures, and show simple proofs
of both in the special case of monadic predicates.

The third application shows that one can determine, given an MSO formula
with morphic predicates, whether it defines a regular language.
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4.1 The Straubing and Crane Beach Conjectures

We first quickly define some circuit complexity classes. The most important here
is AC0, the class of languages defined by boolean circuits of bounded depth
and polynomial size. From AC0, adding the modular gates gives rise to ACC.
Finally, the class of languages defined by boolean circuits of logarithmic depth,
polynomial size and fan-in 2 is denoted by NC1. Separating ACC from NC1

remains a long-standing open problem.
One approach to better understand these classes is through descriptive com-

plexity theory, giving a perfect correspondence between circuit complexity classes
and logical formalisms. Unlike what we did so far, the logical formalisms involved
here use predicates of any arity (we focused on predicates of arity one). A k-ary
predicate P is given by (Pn)n∈N, where Pn ⊆ {0, . . . , n− 1}k. We denote by N
the class of all predicates, and by Reg the class of regular predicates as defined
in [20].

Theorem 4.1 ([1,4,11]).

(1) AC0 = FO[N ],
(2) ACC = (FO + MOD)[N ].

Two conjectures have been formulated on the logical side, which aim at clar-
ifying the relations between different circuit complexity classes. They have been
stated and studied in special cases, we extrapolate them here to all fragments.
Here the fragment F[P ] is described by a class F of formulae and a class P of
predicates.

The first property, called the Straubing property, characterizes the regular
languages (denoted by REG) inside a larger fragment.

Definition 4.2 (Straubing Property). F[P ] has the Straubing property if: all
regular languages definable in F[P ] are also definable in F[P∩Reg]. In equation,
F[P ] ∩REG = F[P ∩Reg].

This statement appears for the first time in [2], where it is proved that FO[N ]
has the Straubing property, relying on lower bounds for AC0 and an algebraic
characterisation of FO[Reg]. Following this result, Straubing conjectures in [20]
that (FO + MOD)[N ] and BΣk[N ] have the Straubing property for k ≥ 1. It
has been shown that several fragments have the Straubing property, as for in-
stance, Σ1[N ], FO[≤,Munif ] and (FO + MOD)[≤,Munif ] (in [20]). We extend
this result here, as a straightforward corollary of Theorem 3.1.

Theorem 4.3. All fragments F[≤,M] have the Straubing property.

In particular, for all k ≥ 1, BΣk[≤,M] has the Straubing property. This result
is, to the best of our knowledge, the first intermediary result towards a proof of
the Straubing Conjecture for BΣk[N ].

The second property, called the Crane Beach property, characterizes the lan-
guages having a neutral letter, and has been proposed by Thérien for the special
case of first-order logic. We say that a language L has a neutral letter e if for all
words u, v, we have uv ∈ L if and only if uev ∈ L.
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Definition 4.4 (Crane Beach Property). F[P ] has the Crane Beach prop-
erty if: all languages having a neutral letter definable in F[P ] are definable in
F[≤].

Unfortunately, the Crane Beach property does not hold in general.

Theorem 4.5 ([3,18]). There exists a non-regular language having a neutral
letter definable in FO[N ].

A deeper understanding of the Crane Beach property specialized to first-order
logic can be found in [3]. In particular, it has been shown that FO[≤,Munif ]
has the Crane Beach property. Here we obtain the following result as a simple
corollary of Theorem 2.2.

Theorem 4.6. MSO[≤,M] has the Crane Beach property.

4.2 Morphic Regular Languages

In this subsection, we apply Theorem 3.4 to the case of morphic predicates, and
obtain the following result: given an MSO formula with morphic predicates, it
is decidable whether it defines a regular language.

The class of morphic predicates was first introduced by Thue in the context
of combinatorics on words, giving rise to the HD0L systems. Formally, let A,B
be two finite alphabets, σ : A∗ → A∗ a morphism, a ∈ A a letter such that
σ(a) = a · u for some u ∈ A+ and ϕ : A∗ → B∗ a morphism. This defines
the sequence of words ϕ(a), ϕ(σ(a)), ϕ(σ2(a)), . . ., which converges to a finite or
infinite word. An infinite word obtained in this way is said morphic.

We see morphic words as predicates, and denote by HD0L the class of mor-
phic predicates. The languages definable in MSO[≤,HD0L] are called morphic
regular.

Theorem 4.7. The following problem is decidable: given L a morphic regular
language, is L regular?

The proof of this theorem goes in two steps: first, we reduce the regularity
problem for a morphic regular language L to deciding the ultimate periodicity
of PL, and second, we show that PL is morphic. Hence we rely on the following
result: given a morphic word, it is decidable whether it is ultimately periodic. The
decidability of this problem was conjectured 30 years ago and proved recently
and simultaneously by Durand and Mitrofanov [8].

The first step is a direct application of Theorem 3.4. For the second step,
observe that thanks to Lemma 3.6, we have PL ∈MSO[≤,HD0L]. We conclude
with the following result from [7].

Lemma 4.8. HD0L is closed under MSO-interpretations, i.e. if P is an infinite
word such that P ∈MSO[≤,HD0L], then P ∈ HD0L.
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5. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Pro-
ceedings of the 1st International Congress of Logic, Methodology, and Philosophy
of Science, CLMPS 1960, pp. 1–11. Stanford University Press (1962)

6. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and gen-
eralizations. Information and Computation 176(1), 51–65 (2002)

7. Dekking, F.M.: Iteration of maps by an automaton. Discrete Mathematics 126(1-3),
81–86 (1994)

8. Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO Theor.
Inform. Appl. 47(2), 201–214 (2013)

9. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second
(first) order theory of (generalized) successor. Journal of Symbolic Logic 31(2),
169–181 (1966)

10. Immerman, N.: Languages that capture complexity classes. SIAM Journal of Com-
puting 16(4), 760–778 (1987)

11. Koucký, M., Lautemann, C., Poloczek, S., Thérien, D.: Circuit Lower Bounds via
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