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Abstract. Low circuit complexity classes and regular languages exhibit
very tight interactions that shade light on their respective expressiveness.
We propose to study these interactions at a functional level, by investi-
gating the deterministic rational transductions computable by constant-
depth, polysize circuits. To this end, a circuit framework of independent
interest that allows variable output length is introduced. Relying on it,
there is a general characterization of the set of transductions realizable
by circuits. It is then decidable whether a transduction is definable in
AC0 and, assuming a well-established conjecture, the same for ACC0.

Introduction

The regular languages in circuit complexity classes play an instrumental role
in some of the most emblematic results of circuit complexity. The celebrated
result of Furst, Saxe and Sipser [11] shows that the regular language PARITY =
{w ∈ {0, 1}∗ | |w|1 ≡ 0 mod 2} is not in AC0, the class of constant-depth,
polysize, unbounded fan-in circuits. As PARITY belongs to ACC0 (which allows
in addition unbounded fan-in modulo gates), this separates AC0 and ACC0.
Barrington’s theorem [1] states that the regular languages are complete for the
class NC1 of logdepth, polysize, and constant fan-in circuits. Further, Koucký,
Pudlák, and Thérien [12] show that regular languages separate classes defined
by ACC0 circuits using linear number of gates and using linear number of wires.

The classification of regular languages within circuit complexity classes thus
attracted interest, culminating in the results of Barrington et al. [2] that entirely
describe the regular languages in AC0,ACC0 and NC1. The algebraic property
of regular languages studied therein deviates sharply from the prevailing line of
work at the time, which relied on the study of the syntactic monoids of regular
languages. (The syntactic monoid is the monoid of transformations of states of
the minimal automaton.) Indeed, PARITY /∈ AC0, while the language EVEN
of even-length words over {0, 1}, which has the same syntactic monoid, does
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belong to AC0. Hence the class of regular languages in AC0 does not admit a
characterization solely in terms of the syntactic monoids.

We propose to take this study to the functional case, that is, to characterize
the functions realized by rational transducers (i.e., input/output automata) that
are expressible by an AC0 circuit family. Similarly to the context at the time
of [2], we face a situation where, to the best of our knowledge, most characteriza-
tions focused on algebraic properties that would blur the line between PARITY
and EVEN (e.g., [14]).

We rely on a property we call continuity for a class of languages V, as bor-
rowed from the field of topology: a transduction τ is V-continuous if it preserves V
by inverse image (i.e., ∀L ∈ V, τ−1(L) ∈ V). It is well known that any trans-
duction τ is continuous for the regular languages; together with an additional
property on the output length of τ , this even characterizes deterministic trans-
ductions [3]. Namely, with d(u, v) = |u| + |v| − |u ∧ v|, where u ∧ v is the largest
common prefix of u and v, the latter property is that d(τ(u), τ(v)) ≤ k ×d(u, v),
a strong form of uniform continuity. Continuity thus appears as a natural invari-
ant when characterizing transductions—the forward behaviors of τ , that is, its
images, are less relevant, as any NP problem is the image of Σ∗ under an AC0

function [4]. Our contributions are three-fold:

– We propose a model of circuits that allows for functions of unrestricted out-
put length: as opposed to previous models, e.g., [19], we do not impose the
existence of a mapping between the input and output lengths.

– Relying on this model, we characterize the deterministic rational transduc-
tions computed by AC0 circuits with access to gates in a given class. This
characterization relies for one part on algebraic objects similar to the ones
used in [2], through the use of the modern framework of lm-varieties [18].
For the other part, we rely on the notion of continuity. This bears a striking
resemblance to the characterization of Reutenauer and Schützenberger [16] of
the transductions with a group as transition monoid.

– The characterization then leads to the decidability of the membership of a
deterministic rational transduction in AC0 or in ACC0. This is effective in the
sense that an appropriate circuit can be produced realizing the transduction.

In Sect. 1, we succinctly cover the automata- and circuit-theoretic notions
necessary to our presentation. In Sect. 2, we introduce the circuit model for
variable output length functions and argue for its legitimacy. In Sect. 3, we show
that studying the transition morphism of an automaton is equivalent to studying
the languages accepted at each of its states; this enables us to keep to a minimum
the algebraic references throughout our presentation. In Sect. 4, we show the
aforementioned characterization and delay to Sect. 5 its implications on AC0

and ACC0. We discuss the results and their limitations in Sect. 6.

1 Preliminaries

Monoid, morphisms, quotient. A monoid is a set equipped with a binary associa-
tive operation, denoted multiplicatively, with a unit element. For an alphabet Σ,
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the set Σ∗ is the free monoid generated by Σ, its unit element being the empty
word ε. A morphism is a map ϕ : M → N satisfying ϕ(ab) = ϕ(a)ϕ(b) and
ϕ(1) = 1, with a, b ∈ M and 1 denoting the unit element of M and N . A mor-
phism ϕ : Σ∗ → T ∗ is an lm-morphism, where lm stands for length-multiplying,
if there is a k such that ϕ(Σ) ⊆ T k. Given a language L and a word u, the left
quotient of L by u is the set u−1L = {v | uv ∈ L}. The right quotient Lu−1 is
defined symmetrically. For w ∈ Σ∗ and a ∈ Σ, we let |w|a be the number of a’s
in w, i.e., the image of w under the morphism a 	→ 1, Σ \ {a} 	→ 0 into (N,+).

Circuits. We use standard notations, as presented for instance in [17] and [19].
By AC0, we denote the class of languages recognized by constant-depth, polysize
circuit families with Boolean gates of unbounded fan-in. We consider nonuniform
families, that is, we leave unconstrained the mapping from the input size n to
the circuit with n inputs. Such families recognize languages in L ⊆ {0, 1}∗; to
extend this to any alphabet Σ, we always assume there is a canonical map from
Σ to {0, 1}|Σ|, that lets us encode and decode words of Σ∗ in binary. A language
L naturally defines an L-gate which outputs 1 iff its input is in L; for instance,
{0, 1}∗1{0, 1}∗ defines the OR gate. For a class of languages V, we write AC0(V)
for languages recognized by AC0 circuit families with access to L-gates for all
L ∈ V. We let ACC0 = AC0(MOD) where MOD is the class of regular languages
on {0, 1}∗ of the form {|w|1 ≡ 0 mod k} for some k. Further, we define TC0 =
AC0(MAJ) where MAJ is the nonregular language {|w|1 ≥ |w|0 | w ∈ {0, 1}∗}.
We will occasionally rely on the conjectured and widely-believed separation of
ACC0 and TC0. Extending circuits to functions, a function f is in FAC0 if there
is a family of constant-depth, polysize circuits with multiple ordered output bits,
such that f(u) is the output of the circuit for input size |u|. We naturally extend
the notation AC0(V) to FAC0(V).

Automata. A deterministic automaton is a tuple A = (Q,Σ, δ, q0, F ), where Q
is the finite set of states, Σ the alphabet, δ : Q × Σ → Q is a partial transition
function, q0 is the initial state, and F is the set of final states. We naturally
extend δ to words by letting δ(q, ε) = q, and δ(q, aw) = δ(δ(q, a), w) when δ(q, a)
is defined. We always assume that any state q is accessible and coaccessible, i.e.,
there is a word uv such that δ(q0, u) = q and δ(q, v) ∈ F . We write L(A, q) for
{w | δ(q0, w) = q}, and L(A) = ∪f∈F L(A, f) for the language of A. For two
states q, q′, we say that q can be separated from q′ in V if there is a language
L in V such that L(A, q) ⊆ L ⊆ L(A, q′). An automaton is all-separable in V
if each pair of distinct states can be separated in V. It is all-definable in V if
every language L(A, q) is in V. We often use the shorter terms V-all-separable
and V-all-definable, of self-explanatory meanings. We write REG for the class of
regular languages.

Continuity, Lm-varieties. A mapping f : Σ∗ → T ∗ is continuous for V, in short
V-continuous, if L ∈ V implies f−1(L) ∈ V—this name stems from the notion
of continuity in topology. The sets of regular languages recognized by circuit
families form a backbone of our work. It is thus natural to assume that these
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sets be closed under operations that AC0 circuits can compute; this is formalized
as follows. A class of languages V is an lm-variety if it is a Boolean algebra of
languages closed under left and right quotient such that any lm-morphism is V-
continuous. It can be shown that if AC0(V)∩REG = V, then V is an lm-variety.
As is customary, we write QA for AC0 ∩REG and Msol for ACC0 ∩REG—these
names stem from the algebraic classes recognizing the languages: quasi-aperiodic
stamps and solvable monoids respectively, see Sect. 3 and [17] for more details.
In particular, ACC0 = TC0 iff AC0(Msol) ∩ REG = Msol [2]. In the sequel, the
symbol V always denotes some lm-variety of languages.

Transducers. A deterministic transducer is a tuple A = (Q,Σ, T, δ, ν, q0, F )
which is an automaton equipped with an additional alphabet T and a mapping
ν : Q × Σ → T ∗ of same domain as δ. We extend ν to words in Σ∗ by letting
ν(q, ε) = ε and ν(q, aw) = ν(q, a)ν(δ(q, a), w), when δ(q, a) is defined. The par-
tial function τ : Σ∗ → T ∗ mapping w ∈ L(A) to ν(q0, w) is called a transduction.
A transducer is said to be output-minimal if for every pair of states q, q′, there is
a word w such that either only one of δ(q, w) or δ(q′, w) is final, or both are and
ν(q, w) = ν(q′, w). For any transduction τ , we fix an arbitrary output-minimal
transducer MinT(τ) realizing it. Note that given a transducer, one can easily
compute an output-minimal transducer realizing the same transduction. We will
see that the choice of MinT(τ) does not bear any impact on the results.

We freely use Q,Σ, T, etc. when an automaton or a transducer is under study,
with the understanding that they are the relevant components of its defining
tuple. Our focus being solely on automata, transducers, and transductions that
are deterministic, we will omit mentioning determinism from now on.

2 Circuit Frameworks for Variable-Length Functions

In the literature, most of the work on functions computed by circuits focus on
variants of the class FAC0 (see, e.g., [19]). In these, multiple (ordered) output
gates are provided, and there is thus an implicit mapping from input length to
output length. Towards circumventing this limitation, we propose a few different
frameworks, and establish some formal shortcomings in order to legitimize our
final choice. Our main requirement is that functions defined using constant-
depth, polysize circuits should be AC0-continuous—this corresponds to a simple
composition of the circuits. In particular, FAC0 functions are AC0-continuous.

2.1 Noninversability

We first consider circuits with a pair of inputs 〈u, v〉, where the represented func-
tion is valued v on u if the circuit accepts the pair 〈u, v〉. By making no syntactic
distinction between input and output, any function has the same complexity as
its inverse if it is functional. We show that this blurs definability:

Proposition 1. There is an AC0-continuous transduction in FAC0 whose
inverse is functional and not AC0-continuous.
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Proof. Consider the minimal, two-state automaton for L = 0∗(a0∗b0∗)∗ and turn
it into a transducer by letting ν(·, 0) = 0 and ν(·, a) = ν(·, b) = 1, and call τ
the resulting transduction. The FAC0 circuit for τ first checks that the input is
in L. This can be done as L ∈ AC0, a fact that can be seen relying on the logical
characterization of AC0: a word is in L iff its first non-0 letter is an a, its last
a b, and the closest non-0 letters to an a (resp. a b) are b’s (resp. a’s). Next,
the circuit simply maps 0 to 0 and a, b to 1. The transduction being in FAC0,
it is AC0-continuous. Now let σ = τ−1, it is clearly functional. But σ−1(L) is
PARITY, hence σ is not AC0-continuous. ��
Thus, much in the fashion of FAC0, this implies that there should be dis-
tinguished input and output gates. We next deal with how their lengths are
specified.

2.2 Output Length as a Parameter

Aiming for a natural and succinct model, we may want that the family of circuits
be parametrized solely by the input length. In such a framework, the presented
circuit for a given input length is equipped with a way to “deactivate” output
gates, in order to allow for different output lengths. Formalizing this idea further,
a deactivating circuit C with n inputs and m outputs is an usual circuit with
an extra input valued z, a new constant symbol. This new symbol behaves as
follows: 1 ∨ z = z ∨ 1 = 1, and any other combination of z with 0, 1,∨,∧,¬ is
valued z. The output of C on a given input is its usual output stripped of the z
symbol. The frameworks used in [5,10,14] are logic counterparts of this model.
Then:

Proposition 2. There is a transduction expressible as a constant-depth, poly-
size family of deactivating circuits which is not AC0-continuous.

Proof. The erasing morphism 0 	→ ε, 1 	→ 1 is a transduction τ that can be
expressed as a family of circuits as in the statement of the Proposition, but
τ−1(12N) is PARITY /∈ AC0. ��
We thus reach the following definition, that will serve as a basis for our study:

Definition 1 (Functional Circuits). A function τ : Σ∗ → T ∗ is expressed
as a circuit family (Cn

m)n,m≥0, where Cn
m is a circuit with n inputs and m + 1

outputs, if:
(∀u, v ∈ Σ∗) τ(u) = v ⇔ C

|u|
|v| (u) = (v, 1) .

The size of the family is the mapping from N to N ∪ {∞}, defined by n 	→
supm≥0 |Cn

m|. Similarly, the depth of the family is the mapping that associates n

to the supremum of the depths of each Cn
m. The class FAC0

v, standing for func-
tions in AC0 with variable output length, is the class of functions expressible
as a family of constant-depth, polysize circuits. The class FAC0

v(V) is defined in
the same fashion as AC0(V), and we let FACC0

v = FAC0
v(MOD).
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Remark 1.

– Any function τ in FAC0
v(V) is such that n 	→ maxu∈Σn |τ(u)| has value in N,

that is, for a given input size, there is a finite number of possible output sizes.
More precisely, this mapping is polynomially bounded. We show this implies
that τ is AC0(V)-continuous. Let (Cn

m)n,m≥0 be the circuit family for τ . Given
a language L in AC0(V) expressed by the circuit family (Dn)n>0, τ−1(L)∩Σn

is recognized by the circuit that applies a polynomial number of circuits Cn
m

to the input, and checks that the only m such that Cn
m outputs (v, 1) is such

that v ∈ Dm.
– If for any n there is an m such that τ(Σn) ⊆ Σm, i.e., if τ is not of variable

output length, then τ ∈ FAC0
v(V) is equivalent to τ ∈ FAC0(V).

– We will be interested in functions from Σ∗ to N, and will speak of their
circuit definability. In this context, the function is either seen as taking value
in {1}∗, and dealt with using a variable-output-length circuit, or taking value
in {0, 1}∗ using an FAC0-like circuit, the output value then corresponding to
the position of the last 1 in the output. These two views are equivalent, and
hence we do not rely on a specific one. We note that (general) transductions
from Σ∗ to {1}∗ have been extensively studied in [7]; therein, Choffrut and
Schützenberger show that such a function is a transduction iff it has a strong
form of uniform continuity, akin to the one presented in the introduction, with
longest common subwords instead of prefixes.

3 Separability, Definability, and Lm-Varieties of Stamps

Recall that the transition monoid of an automaton A is the monoid under com-
position consisting of the functions fw : Q → Q defined by fw(q) = δ(q, w).
Historically, regular languages were studied through properties of the transition
monoids of their minimal automata (the so-called syntactic monoids). As previ-
ously mentioned, the minimal automata for EVEN ∈ AC0 and PARITY /∈ AC0

have the same transition monoid, hence the class AC0 ∩ REG admits no syntac-
tic monoid characterization. Starting with [2], the interest shifted to transition
morphisms of automata, i.e., the surjective morphisms ϕ : w 	→ fw. It is indeed
shown therein that a regular language is in AC0 iff ϕ(Σs)∪{ϕ(ε)} is an aperiodic
monoid for some s > 0 and ϕ associated with the minimal automaton.

A stamp is a surjective morphism from a free monoid to a finite monoid.
A systematic study of the classes of languages described by stamps turned out
to be a particularly fruitful research endeavor of the past decade [6,9,15,18].
Our use of this theory will however be kept minimal, and we will strive to only
appeal to it in this section. The goal of the forthcoming Lemma 1 is indeed to
express algebraic properties in a language-theoretic framework only.

Given a stamp ϕ : Σ∗ → M , we say that L is recognized by ϕ if there is a set
E ⊆ M such that L = ϕ−1(E)—in this case, we also say that L is recognized
by M , which corresponds to the usual definition of recognition (e.g., [17]). We
say that a stamp ϕ : Σ∗ → M lm-divides a stamp ψ : T ∗ → N if ϕ = η ◦ ψ ◦ h,
where h : Σ∗ → T ∗ is an lm-morphism and η : N → M is a partial surjective
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morphism. The product of two stamps ϕ and ψ with the same domain Σ∗ is
the stamp mapping a ∈ Σ to (ϕ(a), ψ(a)). Finally, an lm-variety of stamps is a
class of stamps containing the stamps Σ∗ → {1} and closed under lm-division
and product. An Eilenberg theorem holds for lm-varieties: there is a one-to-one
correspondence between lm-varieties of stamps and the lm-varieties of languages
they recognize [18]. We show:

Lemma 1. Let A be an automaton, V an lm-variety of stamps, and V its cor-
responding lm-variety of languages. The following are equivalent:

(i) The transition morphism of A is in V;
(ii) A is V-all-definable;
(iii) A is V-all-separable.
Proof. (i) → (ii). Let ϕ be the transition morphism of A. Then L(A, q) = ϕ−1(E)
where E = {fw | fw(q0) = q}, hence L(A, q) ∈ V.
(ii) → (iii). This is immediate, as L(A, q) separates q from any other state.
(iii) → (i). Write Lq,q′ for the language separating q from q′. As each of these
are recognized by stamps in V and V is closed under product, the language
Lq = ∩q′ �=qLq,q′ is also recognized by a stamp in V. Similarly, taking the product
of the stamps recognizing the different Lq’s, we see that all of the Lq’s are
recognized by the same stamp ψ : Σ∗ → N in V; let thus Eq be such that
Lq = ψ−1(Eq). Let ϕ : Σ∗ → M be the transition morphism of A. We claim that
ϕ lm-divides ψ, concluding the proof as V is closed under lm-division. Define
η : N → M by η(ψ(w)) = ϕ(w). If η is well-defined, then it is a surjective
morphism, and we are done as ϕ = η ◦ ψ. Suppose ϕ(u) = ϕ(v), then there is
a p ∈ Q such that δ(p, u) = q and δ(p, v) is either undefined or a state q′ = q.
Let w be a word such that δ(q0, w) = p, then ψ(wu) ∈ Eq and ψ(wv) /∈ Eq,
hence ψ(u) = ψ(v), showing that η is well-defined. ��
Remark 2. For V = QA and V = Msol, the properties of Lemma 1 are decidable.

As advertised, the rest of this paper will now be free from (lm-varieties of) stamps
except for a brief incursion when discussing our results in Sect. 6. Lemma 1
enables a study that stands in the algebraic tradition with no appeal to its tools.

4 The Transductions in FAC0
v(V)

In sharp contrast with the work of Reutenauer and Schützenberger [16], we are
especially interested in the shape of the outputs of the transduction. It turns out
that most of its complexity is given by the following output-length function:
Definition 2 (τ#). Let τ be a transduction. The function τ# : Σ∗ → N is the
output-length function of MinT(τ) with all the states deemed final. In symbols,
τ#(w) = |ν(q0, w)|, with MinT(τ) as the underlying transducer.

Theorem 1. Let τ be a transduction and V be such that AC0(V) ∩ REG = V.
The following constitutes a chain of implications:
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(i) τ ∈ FAC0
v(V);

(ii) τ is AC0(V)-continuous;
(iii) τ is V-continuous;
(iv) MinT(τ) is V-all-definable.
Moreover, if τ# ∈ FAC0

v(V) then (iv) implies (i). Somewhat conversely,
(i) implies τ# ∈ FAC0

v(V).

Proof. (i) → (ii). This was alluded to in Remark 1.
(ii) → (iii). This follows from the closure under inverse transductions of REG

and the hypothesis that the regular languages of AC0(V) are in V.
(iii) → (iv). Let q, q′ be two states of A = MinT(τ). We show that we can separate
q from q′. We distinguish the following cases, that span all the possibilities thanks
to the output-minimality of A. In each case, we build a language L separating
L(A, q) and L(A, q′), with L ∈ V relying on continuity and on V being an lm-
variety by hypothesis. By Lemma 1, we then conclude (iv).

– Case 1: There is a w such that only one of δ(q, w) or δ(q′, w) is in F . We
suppose δ(q, w) ∈ F , without loss of generality as V is closed under comple-
ment. Let L = (τ−1(T ∗))w−1, a word x is in L iff δ(q0, xw) ∈ F . This is the
case for all words in L(A, q) and for none in L(A, q′), hence L separates these
languages.

– Case 2: There is a w such that both δ(q, w) and δ(q′, w) are in F , and words
u, u′ such that ν(q, w) = u = u′ = ν(q′, w). Then we have two possibilities:

– Case 2.1: If |u| = |u′|. For a word x ∈ Σ∗, if τ(xw) ends with u, then δ(q0, x)
cannot be q′. Hence L = (τ−1(T ∗u))w−1 ∈ V separates L(A, q) from L(A, q′).

– Case 2.2: If |u| = |u′|. Define k ∈ N to be such that |u| ≡ |u′| mod k, and
let s ∈ {0, 1, . . . , k − 1}. Let x ∈ Σ∗ be such that s ≡ |ν(q0, x)| mod k.
Then if δ(q0, x) = q, we have |τ(xw)| ≡ s + |u| mod k, while δ(q0, x) = q′

makes this equation false. Hence the union L over every s of the languages
(τ−1(T kN+s+|u|))w−1 separates L(A, q) from L(A, q′).

(iv) → (i), assuming τ# ∈ FAC0
v(V). We construct an FAC0

v(V) circuit family
for τ . Fix an input size n and an output size m. Given an input x = x1x2 · · · xn,
we first check, using τ#, that the output length of τ on x is indeed m, and wire
this answer properly to the (m + 1)-th output bit. Next, the j-th output bit,
1 ≤ j ≤ m, is computed as follows. We apply τ# to every prefix of x, until
we find an i such that τ#(x<i) < j ≤ τ#(x≤i), where x<i = x1x2 · · · xi−1 and
similarly for x≤i. Relying on the languages L(A, q), we find the state q in MinT(τ)
reached by x<i, and let u = ν(q, xi). The j-th output bit then corresponds to
the (j − τ#(x<i))-th letter of u.

(i) → (τ# ∈ FAC0
v(V)). Suppose (i), this implies (iv). We construct an

FAC0(V) circuit family for τ#. Fix the input size n, and let x = x1x2 · · · xn

be the input. We can check, using the languages L(MinT(τ), q), in which state q
the word x ends when read. Let wq be a fixed word such that δ(q, wq) ∈ F , and
let r = |ν(q, wq)|. It suffices now to plug the word xwq in the circuit for τ ; the
value of τ#(x) is then the length of τ(xwq) minus r. ��
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Remark 3. The proof of Theorem 1 shows that MinT(τ), and hence τ#, can be
arbitrarily chosen as long as it is output-minimal. The role of τ# is discussed at
greater length in Sect. 6.

5 An Application to AC0 and ACC0

Our primary focus is on the decidability of the membership of transductions in
small-complexity classes. Theorem 1, while providing a characterization of these
transductions, does not come with a decidable property in the general case—even
when some conjectured separations are presupposed. With AC0 and ACC0, the
functions τ# that can be expressed with circuits can however be characterized.

Definition 3 (Constant Ratio). A transducer has constant ratio if every two
words of the same length looping on a state produce outputs of the same length
from this state. In symbols, for any state q and any words u, v of the same length,
δ(q, u) = δ(q, v) = q implies |ν(q, u)| = |ν(q, v)|.
Remark 4. The name of the latter property stems from the fact that in such
a transducer, for any state q, there is a ratio θ such that if δ(q, u) = q, then
|ν(q, u)| = θ|u|. Indeed, suppose a transducer has constant ratio, and let u
and v be words with δ(q, u) = δ(q, v) = q for some q. Write |ν(q, u)| = θ1|u|
and |ν(q, v)| = θ2|v|. Then x = u|v| and y = v|u| are of the same length, and
θ1|u| × |v| = |ν(q, x)| = |ν(q, y)| = θ2|v| × |u|, hence θ1 = θ2.

Lemma 2. (Assuming ACC0 = TC0.) Let τ be a transduction. If τ# is in
FACC0

v, then MinT(τ) has constant ratio.

Proof. Suppose that A = MinT(τ) does not have constant ratio. We give a circuit
family in AC0 with τ#-gates for the language L = {w ∈ {0, 1}∗ | |w|0 = |w|1},
which is complete for TC0. Hence τ# cannot admit an FACC0

v circuit family.
As A does not have constant ratio, there are a state q in A and two words

u, v ∈ Σ∗ of the same length, such that δ(q, u) = δ(q, v) = q and �u = |ν(q, u)| is
different from �v = |ν(q, v)|. Further, let win (resp. wout) be such that δ(q0, win) =
q (resp. δ(q, wout) ∈ F ), and let �in = |ν(q0, win)| (resp. �out = |ν(q, wout)|).

We describe the circuit for L for input size n. Let x denote the input. First,
the circuit transforms each 0 into u, and each 1 into input. The circuit can be
graphically represented as follows:

First, the circuit transforms each 0 into u, and each 1 into v—this can be done
as |u| = |v|. Then win is prepended and wout appended to it, and the resulting
word x′ is fed to τ#. The output is �in + |x|0 × �u + |x|1 × �v + �out, that is:

τ#(x′) = �in +
1
2
(|x|(�u + �v) + (|x|0 − |x|1)(�u − �v)) + �out .
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Now (|x|0 − |x|1)(�u − �v) cancels out iff x has as many 0’s as 1’s. Hence x ∈ L
iff the output of τ# is �in + 1

2 |x|(�u + �v) + �out, which is verifiable in AC0. ��
Having a constant ratio provides an easy way to compute the length function:

Lemma 3. Let τ be a transduction. If MinT(τ) has constant ratio and is V-all-
definable, then τ# is in FAC0

v(V).

Proof. The circuit for τ# guesses a path without cycles for the input word, and
checks that, modulo cycling, it is indeed a correct path for it. The output value
is then entirely determined by the positions of the input at which this underlying
path is taken. We now give a more precise construction.

Let π = (q0, a0)(q1, a1) · · · (qk, ak) ∈ (Q × Σ)∗ be an accepting simple path
in A = MinT(τ), that is, qi+1 = δ(qi, ai), qk+1 = δ(qk, ak) ∈ F , and for i = j,
qi = qj . There is a finite number of such paths, and for each of them, the circuit
contains the following subcircuit. The subcircuit checks that the path in A for
the input word follows π, that is, if all the cycles are removed, then the resulting
path is π. To do so, for each possible values of 1 ≤ p0 < p1 < · · · < pk ≤ n such
that

∑
pi = n (there is a polynomial number of them), the subcircuit checks for

all i ≤ k that the prefix of length pi − 1 of the input is in L(A, qi), and that the
input at position pi is ai. If this holds for all i, then the input word follows the
path π, possibly cycling on each of the states qi, i ≤ k+1, and the output length
is entirely determined. Indeed, with θ0, θ1, . . . , θk+1 the ratios of q0, q1, . . . , qk+1

respectively, and � the sum of the output lengths of the transitions in π (i.e.,
τ#(a0a1 · · · ak)), the value of τ# on the input is:

θ0 × (p0 − 1) +
∑k

i=1 θi × (pi − pi−1 − 1) + θk+1 × (n − pk) + �. ��
Corollary 1. Let τ be a transduction. The following are equivalent, where the
the “resp.” part assumes ACC0 = TC0:

(i) τ ∈ FAC0
v (resp. ∈ FACC0

v);
(ii) τ is continuous for AC0 (resp. for ACC0) and MinT(τ) has constant ratio;
(iii) τ is continuous for QA (resp. for Msol) and MinT(τ) has constant ratio;
(iv) MinT(τ) is all-definable for QA (resp. for Msol) and has constant ratio.

Remark 5. It should be noted that the choice of MinT(τ) is again irrelevant.
Either all the output-minimal transducers for τ are constant ratio, or none are.

Theorem 2. It is decidable whether a transducer realizes an FAC0
v function.

If it does, then a circuit family can be constructed. The same holds for FACC0
v

assuming ACC0 = TC0.

Proof. This is a direct consequence of Corollary 1, together with the minimiza-
tion algorithm of [8], the fact that V-all-definability is decidable, and the fact
that it can be checked that a transducer has constant ratio: it is indeed enough
to check the property on cycles that do not go twice in the same state except
for the first. The constructions of Theorem 1 and Lemma 3 are then effective.��
Corollary 1 can be slightly strengthened for AC0, as in this case:
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Proposition 3. If τ is QA-continuous, then MinT(τ) has constant ratio.

Proof. This is a variant of Lemma 2, where we only rely on the inverse image of
τ instead of a full circuit construction.

Suppose that A = MinT(τ) does not have constant ratio. There are a state q
in A = MinT(τ) and two words u, v ∈ Σ∗ of the same length, such that reading
u (resp. v) from q produces an output of length �u (resp. �v), and �u < �v. Now
the words y = u�v and z = v2�u are such that y produces an output of size
�y = �u × �v, and z produces an output of size �z = �v × 2�u = 2�y.

Now if τ is a QA-continuous transduction, so is the function τ ′ mapping
x ∈ {0, 1}∗ to a word on {a}∗ with �y × |x|1 + �z × |x|0 letters a—it is simply a
matter of replacing 1 with y, 0 with z, and correctly reaching the state q. But
τ ′−1(a2�yN) is PARITY: indeed, x has an odd number of 1 iff τ ′(x) contains an
odd number of blocks a�y . Hence τ ′ is not QA-continuous, and neither is τ . ��

6 Discussion and Limitations

1 We note that Proposition 3 fails in the case of ACC0, as the following example
shows. Consider the morphism h : a 	→ a, b 	→ aa. As the regular languages of
ACC0, Msol, are closed under inverse morphism (this is a consequence of Msol

being a variety), h is Msol-continuous. However, MinT(h) does not have constant
ratio. This was already noted in a different setting by Lange and McKenzie [13].

2 The major role that τ# plays in Theorem 1 raises several questions. First,
is it the case that all the complexity of a transduction is characterized by its
length function? In symbols, is it true that τ# ∈ FAC0

v(V) ⇒ τ ∈ FAC0
v(V)? The

following example shows that it is not. Consider the transduction from {0, 1}∗

to {a, b}∗ that outputs a if the word read so far is in PARITY, and b otherwise.
Then τ# is total and maps every word to its length, it is thus in FAC0

v. However,
w is in PARITY iff the last letter of τ(w) is an a, that is, τ−1({a, b}∗a) is
PARITY, hence τ is not QA-continuous, thus cannot be in FAC0

v.
Next, going down two levels in the statement of Theorem 1, we may wonder

whether the V-continuity of τ is equivalent to that of τ#. One direction is true,
but its converse fails, as the previous example shows:

Proposition 4. If τ is V-continuous, then so is τ#.

Proof. Suppose τ is V-continuous. Let E be a set of integers, and write ΣE for
the words of lengths in E. Suppose {a}E is in V; we show τ−1

# (E) ∈ V.
From Theorem 1, A = MinT(τ) is V-all-definable. Let q be a state of A, and

w a word mapping q to a final state while outputing u. Then (τ−1(ΣE .u))w−1 ∩
L(A, q) is in V, as τ is V-continuous and {a}E ∈ V. Now the union of all these
sets for all states q is precisely τ−1

# (E), hence it is in V. ��

3 Our interest in circuits obscured an equally interesting problem: characteriz-
ing the V-continuous transductions. A general question raised by our character-
ization is:
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Question 1. Which lm-varieties V verify the following statement? A transduction
τ is V-continuous iff MinT(τ) is V-all-definable and τ# is V-continuous.

A direct consequence of Proposition 3 is that V = QA verifies Question 1.
Another such class is given in [16]; therein, Reutenauer and Schützenberger show
that the property holds for V = G, the (lm-)variety of group languages, that is,
languages with a group as syntactic monoid. More precisely, they show that τ is
G-continuous iff the transition monoid of MinT(τ) is a group; this latter property
is equivalent to: the transition morphism of MinT(τ) is a stamp Σ∗ → G, for
G a group. The set of such stamps is an lm-variety of stamps (see [6]), thus by
Lemma 1, their characterization is indeed of the form of Question 1.

4 It is interesting to note that the property on τ# of Question 1 vanishes for
groups: this can be seen as a consequence of Reutenauer and Schützenberger’s
characterization itself, as τ# has the same transition monoid as MinT(τ). On the
other hand it is shown in the same article that there are transductions with an
aperiodic monoid that are not continuous for aperiodic languages. This raises
the question:

Question 2. Which lm-varieties V verify the following statement? If a transduc-
tion τ is such that MinT(τ) is V-all-definable, then τ# is V-continuous.

5 Recall that a nondeterministic transduction is functional iff it is realized by
an unambiguous transduction (see, e.g., [3]). As circuits can read the input mul-
tiple times and in any direction, it seems that they can handle deterministic
and unambiguous transductions in the same fashion. Hence a generalization of
Theorem 1 to the unrestricted case of functional transductions should hold.
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6. Chaubard, L., Pin, J.É., Straubing, H.: First-order formulas with modular predi-
cates. In: LICS, pp. 211–220. IEEE (2006)



A Circuit Complexity Approach to Transductions 153

7. Choffrut, C., Schützenberger, M.P.: Counting with rational functions. Theor.
Comput. Sci. 58(1–3), 81–101 (1988)

8. Choffrut, C.: A generalization of Ginsburg and Rose’s characterization of G-S-M
mappings. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 88–103. Springer,
Heidelberg (1979)

9. Esik, Z., Ito, M.: Temporal logic with cyclic counting and the degree of aperiodicity
of finite automata. Acta Cybern. 16(1), 1–28 (2003)

10. Filiot, E., Krishna, S.N., Trivedi, A.: First-order definable string transformations.
In: Raman, V., Suresh, S.P. (eds.) FSTTCS. LIPIcs, vol. 29, pp. 147–159 (2014)

11. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-
chy. Theor. Comput. Syst. 17, 13–27 (1984)
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