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In this paper, we study the lattice and the Boolean algebra, possibly closed under quotient, 
generated by the languages of the form u∗ , where u is a word. We provide effective 
equational characterisations of these classes, i.e. one can decide using our descriptions 
whether a given regular language belongs or not to each of them.
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1. Introduction

The use of equational descriptions of regular languages is a successful and long-standing approach to obtain characterisa-
tions of classes of regular languages. One of the first results, following Schützenberger’s theorem [14], is the characterization 
of star-free languages by ultimately equational descriptions given by McNaughton and Papert [8, chapter 4] and later by 
Eilenberg and Schützenberger [4]. In the case of a variety of regular languages, Reiterman’s theorem [13] guarantees the 
existence of a characteristic set of profinite equations. This theorem has been extended to several kinds of classes of lan-
guages, including lattices and Boolean algebras. The reader could refer to [5,10] for a more detailed presentation. Let U be 
the class of all languages of the form u∗ , where u is a word. The aim of this paper is to study the four classes of regular 
languages L, B, Lq and Bq obtained respectively as the closure of U under the following operations: finite union and finite 
intersection (lattice operations) for L, finite union, finite intersection and complement (Boolean operations) for B, lattice 
operations and quotients for Lq and Boolean operations and quotients for Bq.

Our main result is an equational characterisation for each of these four classes. These equational characterisations being 
effective, they give as a counterpart the decidability of the membership problem: One can decide whether a given regular 
language belongs to L, B, Lq and Bq respectively. In addition to describing L, B, Lq and Bq in terms of equations, our 
results also provide a general form for the languages belonging to each of these classes.

Motivations. Our motivation for the study of these classes is threefold. First, a few years ago, Restivo proposed the problem 
of characterising the variety of languages generated by the languages of the form u∗ , where u is a word.1 Given that a 
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variety of languages is a class of regular languages closed under Boolean operations, quotients and inverses of morphisms, 
our result can be viewed as a first step towards the solution of Restivo’s problem.

Our second reason for studying these classes was to provide non trivial applications of the equational theory of regular 
languages as defined by Gehrke, Grigorieff and Pin in [5,10]. There are indeed plenty of examples of known equational 
characterisations of varieties of languages, but not so many of classes of languages that are not closed under inverses 
of morphisms or under quotients. As far as we know, the only other studied examples are the ones given in [5] (about 
languages with a zero and slender languages – see related work below).

Our third motivation is rather a long term perspective since it has to do with the (generalised) star-height problem, 
a long standing open problem on regular languages [11]. It appears that a key step towards the solution of this problem 
would be to characterise the Boolean algebra generated by the languages of the form F ∗ , where F is a finite language. The 
case F = {u} studied in this paper is certainly a very special case, but it gives an insight into the difficulty of the general 
problem.

Related work. A related class is the class of slender languages [6,15], which can be written as finite unions of languages of 
the form xu∗ y, where x, u, y ∈ A∗ . The class of slender or full languages is a lattice closed under quotients that is therefore 
characterised by a set of equations [5]. These equations correspond in fact to patterns that cannot be found in any minimal 
automaton that computes a slender language. In our case, equations provided to characterise classes L, B, Lq and Bq can 
also be seen as forbidden patterns in automata. Then, we deduce normal forms for the languages in L, B, Lq and Bq.

Organisation of the paper. Section 2 gives classical definitions and properties about algebraic automata theory and profinite 
semigroups. Section 3 is dedicated to the study of the syntactic monoid of u∗ for a given word u. In particular, we present 
useful algebraic properties of the syntactic monoid of u∗ . Section 4 presents the equational theory of regular languages: it 
first gives classical results, then presents the equations satisfied by u∗ , and finally gives the characterisations of L, Lq and 
Bq. The study of B is much more intricate and involves specific tools that are given in Section 5. Finally, Section 6 presents 
decidability issues. Sections 2 to 6 deal with alphabet with at least two letters. The case of a unary alphabet derives from 
the two-letter case. It is treated in Section 7.

Notations. We denote by A a finite alphabet with at least two letters, by A∗ the set of words on A, by 1 the empty word 
and by |u| the length of a word u.

This paper is a long version of the paper [3], that was published in MFCS’15, containing all the proofs that were missing 
in the short version and a complete description of the unary case.

2. Recognisability and the profinite monoid

In this section, we introduce the definitions of recognisability by monoids and of profinite monoid. For more details, the 
reader could refer to [2].

Monoids and recognisability. A monoid M is a set equipped with a binary associative operation with a neutral element 
denoted by 1. The product of x and y is denoted by xy. An element e of M is idempotent if e2 = e. An element 0 ∈ M
is a zero of M if for all x ∈ M , 0x = x0 = 0. Given two monoids M and N , ϕ : M → N is a morphism if for all x, y ∈ M , 
ϕ(xy) = ϕ(x)ϕ(y) and ϕ(1) = 1.

In a finite monoid, every element has an idempotent power: for all x ∈ M , there is nx ∈ N − {0} such that xnx is idem-
potent. The smallest nx satisfying this property is called the index of x. Moreover, there is an integer n �= 0 such that for 
all x ∈ M , xn is idempotent. For instance, one could take the product of the nx . The smallest integer satisfying this property 
is called the index of the monoid and is denoted by ω. Thus, xω is the unique idempotent in the subsemigroup generated 
by x.

Given a monoid M and a morphism ϕ : A∗ → M , a language L is said to be recognised by (M, ϕ) if there is P ⊆ M such 
that L = ϕ−1(P ). The language L is said to be recognised by M if there is ϕ such that (M, ϕ) recognises L. A language is 
regular if and only if it is recognised by a finite monoid. Moreover, the smallest monoid that recognises a regular language 
L is unique up to isomorphism and is called the syntactic monoid of L. The associated morphism ϕ is called the syntactic 
morphism and ϕ(L) is called the syntactic image of L. Furthermore, for each word u, we call ϕ(u) the syntactic image of u
with respect to L. The syntactic monoid of a regular language can be computed as it is the transition monoid of the minimal 
(deterministic) automaton of L.

Free profinite monoid. Given two words u and v , a monoid M separates u and v if there is a morphism ϕ : A∗ → M such 
that ϕ(u) �= ϕ(v). If u �= v , there is a finite monoid that separates u and v . A distance d can be defined on A∗ as follows: 
d(u, u) = 0 and if u �= v , d(u, v) = 2−n where n is the smallest size of a monoid that separates u and v .

Every finite monoid is seen as a metric space equipped with the distance d(x, y) = 1 if x �= y and d(x, y) = 0 otherwise. 
This implies that every morphism from A∗ to a finite monoid is a uniformly continuous function.

We briefly recall some useful definitions and results on the free profinite monoid. We refer to [2] for an extended presen-
tation of this subject. The free profinite monoid of A∗ , denoted by Â∗ can be defined as the completion for the distance d
of A∗ . It is a compact space such that A∗ is a dense subset of Â∗ . Its elements are called profinite words. It is known that a 
language L is regular if and only if L is open and closed in Â∗ , where L is the topological closure of L in Â∗ .
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Fig. 1. Minimal deterministic automaton and monoid representation of (aab)∗ .

Finally, every morphism from A∗ to some finite monoid M can be uniquely extended to a uniformly continuous mor-
phism from Â∗ to M . Given a morphism ϕ from A∗ to M , we will denote by ϕ̂ its unique extension. Moreover, in the rest 
of the paper, we will use the convention of denoting morphisms from Â∗ with a ̂ .

The two following examples are profinite words that are not finite words and that will be intensively used in the 
remainder of the paper.

Example 1 (Idempotent power). Given a word u ∈ A∗ , the sequence (un!)n converges in Â∗ . Its limit is denoted by uω . Given 
a finite monoid M and a morphism ϕ̂ : Â∗ → M , ϕ̂(uω) = ϕ̂(u)ω .

Example 2 (Zero [1,12]). Let A be an alphabet with at least two letters and fix a total order on it. Let (un)n be the sequence 
of all words ordered by the induced shortlex order (a word u is smaller than a word v for the shortlex order if |u| < |v|
or |u| = |v| and u is smaller than v for the lexicographic order induced by the order on the alphabet). We set: v0 =
u0 and for all n ∈ N, vn+1 = (vnun+1 vn)(n+1)! . The sequence (vn)n converges in Â∗ and we denote by ρA its limit. Given a 
finite monoid M and a morphism ϕ̂ : Â∗ → M , if M has a zero then ϕ̂(ρA) = 0.

3. The languages u∗

As mentioned in the introduction, our goal is to describe classes generated by the languages u∗ . We will see in Section 4
that proving the correctness of such characterisations requires a precise description of the structure of the syntactic monoid 
of a given language u∗ and particularly of its idempotents.

Therefore, this section addresses this study by exhibiting some properties of the syntactic monoid of u∗ . Let us introduce 
two notions useful to study the languages of this form. A word u is said to be primitive if for all words v and all integers n, 
the condition u = vn implies n = 1 and v = u. A word v is said to be a conjugate of u if there are words u1, u2 such that 
u = u1u2 and v = u2u1.

Every language v∗ can thus be written as (um)∗ where u is a primitive word and m a positive integer. We consider now 
a primitive word u and a positive integer m.

We will prove that in the syntactic monoid of (um)∗ , there is a zero that is the syntactic image of words that cannot be 
completed into a word of (um)∗ . Idempotent elements are exactly this zero, the neutral element and the syntactic images 
of the conjugates of um . Thus there are |u| + 2 idempotents. Moreover, if the idempotent power of a syntactic image of a 
word is not zero, then this word has to be a power of a conjugate of u. Finally, the index of the syntactic images of u and 
of its conjugates is m. All these properties are instantiated in Example 3 and stated in the following propositions.

Example 3. We show in Fig. 1 the minimal deterministic automaton and monoid representation of the language (aab)∗ . The 
elements in boxes are the elements of the syntactic monoid of (aab)∗ . An element has a star in its box if it is idempotent. 
The conjugates of aab are aab, aba and baa. Finally, the syntactic image of b2 is a zero of the monoid.

We now introduce some preliminary results about the structure of the syntactic monoid of languages of the form (um)∗ . 
In what follows, M will denote the syntactic monoid of (um)∗ and ϕ its syntactic morphism.

Proposition 1. The index of u and of its conjugates is m.
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Proof. First of all, for 1 � k < m let us prove that ϕ(u)k �= ϕ(u)2k .

ukum−k = um ∈ (um)∗ and u2kum−k = um+k /∈ (um)∗.
Finally let us prove that ϕ(u)m = ϕ(u)2m . Given two words s and t , sumt ∈ (um)∗ if and only if su2mt ∈ (um)∗ . The same 
proof holds for the conjugates of u. �

Recall that the alphabet is supposed to contain at least two letters (the following propositions do not hold in the unary 
case).

Proposition 2. The monoid M has a zero which is the image of a word that does not belong to (um)∗ .

Proof. Consider a word v such that |v| = |u| and v is not a factor of u2. First of all, such a word exists, since u2 has at 
most |u| factors of length |u| and there are at least 2|u| words of length |u| and n < 2n for all positive integer n. Finally, 
ϕ(v) = 0. Indeed, for all words s, t we have svt /∈ (um)∗ . Otherwise v would be a factor of u2. �
Proposition 3. The profinite word ρA does not belong to (um)∗ .

Proof. By Proposition 2, the syntactic monoid of (um)∗ has a zero that is the image of a word that does not belong to 
(um)∗ . Thus 0 is not in the syntactic image of (um)∗ , and since ϕ̂(ρA) = 0 then ρA /∈ (um)∗ . �

The following proposition can be found for example in [7, Proposition 1.3.3].

Proposition 4. The word um has exactly |u| conjugates that are the words of the form vm where v is a conjugate of u.

Proposition 5. Non-zero idempotents in M are either the neutral element of M or the syntactic images of the conjugates of um. Thus 
there are exactly |u| + 2 idempotents in the syntactic monoid of (um)∗ .

Proof. First of all, given a conjugate v of um and two words s and t , svt ∈ (um)∗ if and only if sv2t ∈ (um)∗ . Conversely, 
consider a word v such that for all s, t , svt ∈ (um)∗ if and only if sv2t ∈ (um)∗ . Then, if ϕ(v) �= 0 then there is s and t
such that both svt ∈ (um)∗ and sv2t ∈ (um)∗ . Thus there is k such that v is a conjugate of ukm , that means that v = v ′ km

where v ′ is a conjugate of u. By Proposition 1, we have: ϕ(v) = ϕ(v ′)km = ϕ(v ′ m). Thus, a non-zero idempotent in M is the 
syntactic image of a conjugate of um . �
Proposition 6. For all words v, if ϕ(v)ω �= 0 then v is a power of a conjugate of u.

Proof. Assume that ϕ(v)ω �= 0 and let k be an integer such that ϕ(v)k = ϕ(v)ω . By Propositions 4 and 5, there exist two 
words s, t such that u = st and ϕ(vk) = ϕ((ts)m). Moreover,

u2m = (st)2m = s(ts)m(ts)m−1t

Therefore, there exists k′ such that:

svk(ts)m−1t = (st)k′m

and so:

vk = (ts)(k
′−1)m �

4. Equational characterisations of L, Lq and Bq

This section covers the equational theory of regular languages. First, Section 4.1 presents known results about equations. 
Then Section 4.2 applies this theory to the study of L, Lq and Bq, by giving equations that characterise them.

4.1. Equational characterisations of algebraic structures of regular languages

A lattice (resp. a Boolean algebra) of languages of A∗ is a class of languages containing the empty language ∅, the full 
language A∗ and which is closed under finite union and finite intersection (resp. finite union, finite intersection and com-
plement). A class of languages L is closed under quotients if for all L ∈L, for all w ∈ A∗ , w−1L and Lw−1 belong to L. Recall 
that w−1 L = {w ′ | w w ′ ∈ L} and Lw−1 = {w ′ | w ′w ∈ L}. Let u and v be two profinite words. A language L ⊆ A∗ satisfies 
the equation u → v if the condition u ∈ L implies v ∈ L. It satisfies u � v if for all words x, y, xuy ∈ L implies xv y ∈ L. The 
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notation u ↔ v is shorthand for u → v and v → u and similarly u = v is shorthand for u � v and v � u. Observe that given 
a regular language L and its syntactic morphism ϕ : A∗ → M , the language L satisfies u = v if and only if ϕ̂(u) = ϕ̂(v) in M . 
A class of languages L is defined by a set of equations E if the following equivalence holds: L ∈ L if and only if L satisfies 
all the equations in E .

The kind of equations used to describe a class of languages is strongly related to its closure operations. The two following 
propositions formalise this statement.

Proposition 7 (Theorem 5.2 [5]). A class of regular languages is defined by a set of equations of the form u → v (resp. u ↔ v) if and 
only if it is a lattice (resp. a Boolean algebra) of regular languages.

Proposition 8 (Theorem 7.2 [5]). A class of regular languages is defined by a set of equations of the form u � v (resp. u = v) if and 
only if it is a lattice (resp. a Boolean algebra) of regular languages closed under quotients.

Equations with zero. The existence of a zero in a syntactic monoid is given by the equations:

ρA x = xρA = ρA

If these equations are satisfied, we will use the notation 0 instead of ρA . For example the set of equations:{
ρA � x

ρA x = xρA = ρA
is replaced by 0 � x

The zero has been used to describe several classes of languages. For instance, the equations 0 � x for x ∈ A∗ describe 
exactly the so called nondense languages. Another example is the class of slender or full languages defined in the introduc-
tion [6,15]. This class of languages is a lattice closed under quotients; it is described by the following equations:

0 � x for x ∈ A∗

xωuyω = 0 for x, y ∈ A+, u ∈ A∗ and i(uy) �= i(x)

where i(v) is the first letter of v for any v ∈ A+ [9].

4.2. Characterisations of L, Lq and Bq

We give here a list of equations used in the study of L, Lq, Bq and B. The proofs of the characterisations of these 
classes by sets of equations are made in two steps.

We first verify that the equations are correct and then check for their completeness. For the first step, it is sufficient 
to prove that for all words u, the language u∗ satisfies the set of equations. From the nature of the equations (→, ↔, 
�, =), we then obtain directly that the whole lattice, Boolean algebra and their closure under quotients satisfy the given 
set of equations. This step of correctness can be derived from the structure of the languages of the form u∗ , presented in 
Section 3.

The second step is to prove that only the languages in the desired structures satisfy the set of equations. This step is 
more intricate since it requires a full understanding of the combinatorics of the classes we consider.

First we define the following two languages:

Pu =
⋃

p prefix of u

u∗ p and Su =
⋃

s suffix of u

su∗

The equations:

xω yω = 0 for x, y ∈ A∗ such that xy �= yx (E1)

xω y = 0 for x, y ∈ A∗ such that y /∈ P x (E2)

yxω = 0 for x, y ∈ A∗ such that y /∈ Sx (E3)

xω � 1 for x ∈ A∗ (E4)

0 � 1 (E5)

x� ↔ xω+� for x ∈ A∗, � > 0 (E6)

xω → 1 for x ∈ A∗ (E7)

x → x� for x ∈ A∗, � > 0 (E8)
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Some equations are clearly satisfied by u∗ such as equations (E8) and (E7). Indeed, if v ∈ u∗ then for all �, v� is also a 
power of u and belongs to u∗ (E8). Similarly, 1 always belongs to u∗ (E7).

Proving that u∗ satisfies the other equations is more difficult and requires to analyse the structure of its syntactic monoid. 
In particular, the role of the idempotents is important. These proofs are given in the following propositions. In particular, 
we first give some implications between these sets of equations.

Proposition 9.

1. The sets of equations (E1) and (E6) imply the set of equations (E2).
2. The sets of equations (E1) and (E6) imply the set of equations (E3).
3. The sets of equations (E1) and (E4) imply the set of equations (E5).
4. The set of equations (E4) implies the set of equations (E7).
5. The sets of equations (E4) and (E8) imply the set of equations (E6).

Proof. 1. Let L be a regular language satisfying the sets of equations (E1) and (E6). Let us denote by ϕ its syntactic mor-
phism, m the index of its syntactic monoid and P its syntactic image. Either 0 ∈ P or not. If 0 ∈ P , then we can argue on Lc . 
Indeed, Lc has the same syntactic monoid and its syntactic image is P c . Thus 0 /∈ P c , and since the sets of equations (E1)
and (E6) are symmetric (= and ↔), then Lc also satisfies them. Finally, since (E2) is also symmetric, we have that if Lc

satisfies it, then L will also satisfy it. So, we can suppose that 0 /∈ P .
Assume now that ϕ̂(xω y) �= 0 for some words x and y. Then this implies that there are words u and v such that 

uxω yv ∈ L. By (E6), (uxω yv)ω+1 ∈ L. Moreover:

(uxω yv)ω+1 = uxω(yvuxω)ω yv ∈ L

Since 0 /∈ P then ϕ̂(xω(yvuxω)ω) �= 0 or equivalently ϕ̂(xω(yvuxm)ω) �= 0. So by (E1), xyvuxm = yvuxmx. Then, there is a 
word t and two integers � � k such that x = t� and yvuxm = tk . Finally y is a prefix of tk so a prefix of tk� and so a prefix 
of xk . We have proved that if ϕ̂(xω y) �= 0 then y ∈ P x which proves (E2).

2. The proof is symmetric to the previous one.

3. The set of equations (E1) is only used to prove the existence of a zero in the monoid. Then it is sufficient to observe 
that (E5) is a particular case of equations in (E4) where x is such that xω = 0.

4. For all words x and y, x � y implies by definition that x → y.

5. Let � > 0 and x ∈ A∗ . The set of equations (E4) implies that for all words u and v , uxωv → uv . By taking u = 1 and 
v = x� , we obtain that xω+� → x� . Conversely, let L be a regular language satisfying the set of equations (E8), and m the 
index of its syntactic monoid. Suppose that x� ∈ L. Then by (E8), (x�)m+1 = x�m+� ∈ L. Finally this implies that xω+� ∈ L, 
which proves x� → xω+� . �
Proposition 10. For all words u, the language u∗ satisfies the sets of equations (E1), (E2), (E3), (E4), (E6) and (E8).

Proof. (E1): Let x, y ∈ A∗ such that xy �= yx, and u = vm with v primitive. Let us denote by ϕ the syntactic morphism of u∗ . 
First of all, if ϕ(x)ω = 0 or ϕ(y)ω = 0, then the equation is satisfied. Otherwise, by Proposition 6, x and y are powers of 
conjugates of v . But since xy �= yx, these conjugates are different and thus ϕ(x)ωϕ(y)ω = 0.

(E4): Let x ∈ A∗ and k its idempotent power. Let u = vm where v is primitive. First assume that ϕ̂(xω) �= 0. By Proposi-
tion 6, there exist two words s and t such that st = v and an integer k′ such that xk = (ts)k′m . Let p and q be two words 
such that pxkq ∈ u∗ . There is an integer � such that:

pxkq = p(ts)k′mq = (st)�m

Thus, there exists a prefix s′ of st and an integer α such that p = (st)αs′ and a suffix t′ and an integer β such that 
q = t′(st)β . Therefore,

pxkq = (st)αs′(ts)k′mt′(st)β = (st)�m

Necessarily, s′ = s and t′ = t . Finally,

pq = (st)α+β+1 = (st)(�−k′)m ∈ u∗

So pxωq ∈ u∗ implies that pq ∈ u∗ and thus xω � 1. Finally, if ϕ̂(xω) = 0 then xω � 1 since 0 /∈ u∗ .

(E8): If x ∈ u∗ , then x = uk for some integer k. Then for all � > 0, x� = uk� ∈ u∗ .

(E6): By Proposition 9.5 and by (E4) and (E8).

(E2): By Proposition 9.1 and by (E1) and (E6).

(E3): By Proposition 9.2 and by (E1) and (E6). �
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We will prove now that the languages of the form (um)∗ur satisfy some of the sets of equations given in Section 4.2.

Proposition 11. Given a word u and two positive integers m and r, languages (um)∗ and (um)∗ur are mutually quotients of one 
another. Thus they have the same syntactic monoid and verify the same equations of the form � and =.

Proof. The following two equations prove that languages (um)∗ and (um)∗ur are mutually quotients of one another.

(um)∗ = ((um)∗ur)(ur)−1 and (um)∗ur = (um)∗(um−r)−1 �
Proposition 12. For all words u, integers m and r, the language (um)∗ur satisfies the sets of equations (E5), (E6) and (E7).

Proof. (E5): By Proposition 10, the language (um)∗ satisfies (E1) and (E4). Thus by Proposition 9.3, it also satisfies (E5). 
Finally, by Proposition 11, (um)∗ur satisfies the same equations of the form � and =. So it satisfies (E5).

(E6): Let x be a word in A∗ and assume that x� = (um)kur for k ∈ N. Since x is a power of u, its idempotent power, xm , 
is syntactically equivalent to um . Thus:

ϕ̂(xωx�) = ϕ(umx�) = ϕ((um)k+1ur) ∈ ϕ(L)

By Proposition 11, the language (um)∗ur satisfies xω � 1 since (E4) is satisfied by (um)r . In particular, xωx� → x� is satisfied. 
Finally xωx� ↔ x� (E6) is satisfied by the language (um)∗ur .

(E7): By Proposition 10, the language (um)∗ satisfies (E4). By Proposition 11, the language (um)∗ur also satisfies (E4). 
Finally, by Proposition 9.4 it also satisfies (E7). �

The following theorem gives the equational characterisations of Bq, Lq and L.

Theorem 1. Over a finite alphabet with at least two letters:

1. The class Bq is defined by equations (E1), (E2) and (E3).
2. The class Lq is defined by equations (E1), (E2), (E3) and (E4).
3. The class L is defined by equations (E1), (E4) and (E8).

To prove these characterisations we introduce a normal form for the languages in Bq, Lq and L. More precisely, we 
prove that a language which satisfies the sets of equations can be written in a normal form. Finally, normal forms imply 
membership in the classes Bq, Lq or L.

Remark 1. The proof is constructive: assuming that a language L satisfies the set of equations, one can compute the words 
and the integers given in the normal form.

We start with the most general class Bq and then we restrict to the classes Lq and L by adding sets of equations in the 
equational characterisation. Hence, let us start with Bq.

The case of Bq
First, we observe that the finite languages are in Bq, as for instance, the language {aab}. Indeed, {aab} = a−1(aaab)∗ ∩

(aab)∗ . Given a word u, and a non-negative integer r, we denote by u�r the language u∗ur . Since this language can be 
rewritten as u∗ − {1, u, . . . , ur−1}, it belongs to Bq. Similarly, by using the closure by quotient we capture the languages 
u�r p and su�r where p (resp. s) is a prefix (resp. a suffix) of u.

Finally, the following normal form fully characterises the class Bq: if L is a language in Bq different from A∗ , then L can 
be written as(

k⋃
i=1

u�ri
i pi

)
∪ F or

((
k⋃

i=1

u�ri
i pi

)
∪ F

)c

where (ui)i=1...k and F are finite sets of words, pi is a prefix of ui and (ri)i=1...k are integers. We have sketched the proof 
that all the languages that can be written in this normal form are in Bq. The difficult part is to prove that every regular 
language that satisfies the equations can be written in the normal form. Let us now give the complete and formal proof. In 
the following two propositions, recall that U denote the set of all the languages of the form u∗ , where u is a word.

Proposition 13. The class Lq and thus Bq contains all finite languages.
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Proof. Let u be a word, let us prove that {u} is generated by quotient and intersection of languages in U . Let a be a letter 
distinct from the first letter of u. Then a−1(au)∗ ∩ u∗ = {u}. Indeed,

a−1(au)∗ ∩ u∗ = u(au)∗ ∩ ({1, u} ∪ uu∗) = {u}
since the first letter of u is different from a. Finally finite languages are finite unions of singletons. �
Proposition 14. For all words u and p a prefix of u different from u, the language u∗p is generated by a quotient of languages in U .

Proof. Let u be a word and p be a prefix of u. Let s be the word such that u = ps. Then u∗ p = u∗s−1. �
Proposition 15. For all words u, p a prefix of u and r a non-negative integer, u�r p ∈ Bq.

Proof. Let u be a word, p be a prefix of u and r be a non-negative integer. If p = u then u�r p = u�r+1. Hence we can 
suppose that p is different from u. The language {un p | 0 � n < r} is finite and thus by Proposition 13 it belongs to Bq. 
Finally u�r p = u∗ p − {un p | 0 � n < r} belongs to Bq since u∗ p ∈ Bq thanks to Proposition 14. �

Theorem 2 gives two characterisations of Bq, the first one in terms of profinite equations and the second one providing 
a normal form for the languages in Bq. The following proposition is needed in the proof of Theorem 2.

Proposition 16 (Folklore). Let u be a word. Let M be a monoid and ϕ : A∗ → M be a morphism. If |u| � |M| + 1 then there are three 
words u1 , u2 , u3 such that u = u1u2u3 and for all k ∈N, ϕ(u) = ϕ(u1uk

2u3).

Theorem 2. Let L be a regular language and m be the index of its syntactic monoid. The following properties are equivalent:

1. L ∈ Bq.
2. L satisfies the sets of equations (E1), (E2) and (E3).
3. If L �= A∗ then there are:

· a finite set of words (ui)i=1...k,
· for all i = 1, . . . , k, a prefix of ui denoted by pi ,
· a finite set of non negative integers (ri)i=1...k, such that for all i, ri < 2m,
· a finite set of words F ,
such that:

L = (

k⋃
i=1

u�ri
i pi) ∪ F or L = ((

k⋃
i=1

u�ri
i pi) ∪ F )c

Proof of Theorem 2. We prove Theorem 2 by proving the following sequence of implications 1 ⇒ 2 ⇒ 3 ⇒ 1.
1 implies 2: By Proposition 10, u∗ satisfies equations (E1), (E2) and (E3).

3 implies 1: Thanks to Propositions 13 and 15, finite languages and languages of the form u�r p for p a prefix of u belong 
to Bq. Hence, by finite union and complement, languages of the form given in point 3 of the proposition belong to Bq.

2 implies 3: Let L be a language different from A∗ which satisfies (E1), (E2) and (E3). Let ϕ be its syntactic morphism, 
m be the index of its syntactic monoid and P be its syntactic image. Without loss of generality, we can assume that 
0 /∈ P . Otherwise we can argue on Lc since it satisfies the same symmetric equations. We now set a total order on A and 
consider the induced shortlex order. We construct sequences of pairs of words (un, pn)n�1 and integers (rn)n�1 satisfying 
the following conditions: for an integer i � 1, ui is the smallest word for the shortlex order, pi is the smallest prefix of ui
and ri is the smallest integer such that:

· ri < 2m,
· u�ri

i pi ⊆ L,

· u�ri
i pi �

(
∪ j<i u

�r j

j p j

)
.

First observe that for a given ui , there is a finite set of possible pi . Moreover, for given ui and pi , there is at most one 
possible ri . Consider now the language:

L′ = (
⋃
i�1

u�ri
i pi) ∪ {u ∈ L | |u| � N}

where N is the size of the syntactic monoid of L. To conclude the proof we prove now that:
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1. L = L′ ,
2. and the sequence of (ui) is finite.

First we deal with the equality L = L′ .

Lemma 1. L = L′

Proof. By construction L′ ⊆ L. Let us now prove the converse direction. Let v ∈ L. If |v| � N then v ∈ L′ and we can 
conclude. Otherwise, by Proposition 16, v = v1 v2 v3 such that for all n ∈ N, ϕ(v) = ϕ(v1 vn

2 v3). Since v ∈ L then for all 
integer n, v1 vn

2 v3 ∈ L and v1 vω
2 v3 ∈ L. Recall that we assume 0 not to be in L. Therefore we have ϕ̂(v1 vω

2 v3) �= 0 and by 
equations (E2) and (E3) we have v1 ∈ S v2 and v3 ∈ P v2 . We set the following notations:{

v ′
1 is the prefix of v2

v ′′
1 is the suffix of v2

such that v1 = v ′′
1 vk

2 for some integer k and v ′
1v ′′

1 = v2.{
v ′

3 is the suffix of v2

v ′′
3 is the prefix of v2

such that v3 = v�
2 v ′′

3 for some integer � and v ′′
3 v ′

3 = v2.

Therefore we have:

v1 vn
2v3 = v ′′

1 vk
2 vn

2 v�
2 v ′′

3 = v ′′
1(v ′

1 v ′′
1)k+1+�+n v ′′

3 = (v ′′
1 v ′

1)
k+1+�+n v ′′

1 v ′′
3

Both words v ′
1 and v ′′

3 are prefixes of v2. If |v ′′
3| � |v ′

1| then v ′′
1 v ′′

3 is a prefix of v ′′
1 v ′

1. Otherwise, v ′′
1 v ′′

3 = v ′′
1 v ′

1 p(v ′′
1) where 

p(v ′′
1) is a prefix of v ′′

1. In any case, for all n, v1 vn
2 v3 can be written as ur+n p for some word u, p a prefix of u and some 

integer r. Since for all n, ϕ(v) = ϕ(v1 vn
2 v3), then u�r p ⊆ L (and v = ur+1 p). Moreover, by definition of the index m, if 

r = qm + s with s < m then ϕ(ur+n) = ϕ(um+s+n). Thus we can choose r < 2m. Finally, either u has been chosen in the 
sequence (since it satisfies the two first conditions) and thus v belongs to L′ , or u�r p ⊆ (∪ j<iu

�r j

j p j) for some i and thus 
v also belongs to L′ . We have proved that L = L′ . �

Let us prove now that the sequence (ui)i is finite.

Lemma 2. The sequence (ui)i is finite.

Proof. By contradiction, suppose that we can construct an infinite sequence of words (ui)i . Then there is an infinite sub-
sequence of (ui)i , denoted by (vi)i such that for all i, j, ϕ(vi) = ϕ(v j). Suppose that the sequence of (vi)i is maximal, that 
is to say we consider all the words in the sequence (ui)i having the same given image by ϕ . Recall that for all i, there is 
a prefix pi of vi and an integer ri such that:

(vi)
�ri pi ⊆ L and (vi)

�ri pi �
⋃
j<i

(v j)
�r j p j

First of all, if there is i �= j such that vi v j �= v j vi then:

ϕ̂(vω
i ) = ϕ(vi)

ωϕ(v j)
ω = 0 (by (E1))

Then, ϕ̂(vω
i pi) = 0 and 0 ∈ P , which contradicts the hypothesis. Hence, for all i, j, vi v j = v j vi . Thus there is word v , and 

a sequence of positive integers (ki)i such that vi = vki . Nevertheless, one can choose ki � 2m, since ϕ(v2m+n) = ϕ(vm+n). 
Thus finally, the sub-sequence (vi)i is finite, which contradicts the hypothesis, and concludes the proof. �
Example 4. The language A∗aaA∗ is not in Bq. Indeed, the first equation is not satisfied since the syntactic image of the 
words ab and b are idempotents, but the syntactic image of abb is not syntactically equal to 0. However, the language 
A∗(aa + bb)A∗ satisfies the three sets of equations and is therefore in Bq but not in Lq since the set of equations (E4) is 
not satisfied: the syntactic image of aa is 0, and by equation (E4), 0 � 1, so 1 should be in the language but that is not the 
case. We can even give the normal form of this language:

A∗(aa + bb)A∗ = ((ab)∗ ∪ (ab)∗a ∪ (ba)∗ ∪ (ba)∗b)c
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The case of Lq
We can now achieve the reduction from Bq to Lq, that is removing the closure by complement, by adding the set 

of equations (E4) in the equational characterisation. Furthermore, we obtain that the normal form is a restriction of the 
previous one: if L ∈Lq is different from A∗ , then

L =
(

k⋃
i=1

u∗
i pi

)
∪ F

Theorem 3. Let L be a regular language. The following properties are equivalent:

1. L ∈Lq.
2. L satisfies the set of equations (E1), (E2), (E3) and (E4).
3. If L �= A∗ then there are:

· a finite set of words (ui)i=1...k,
· for all i = 1, . . . , k, a prefix of ui denoted by pi different from ui ,
· a finite set of words F ,
such that:

L = (

k⋃
i=1

u∗
i pi) ∪ F

Proof. 1 implies 2: By Proposition 10, u∗ satisfies (E1), (E2), (E3) and (E4).

3 implies 1: By Proposition 13, finite languages belong to Lq and by Proposition 14, languages of the form u∗ p for p
a prefix of u different from u, also belong to Lq. Finally, since languages given in point 3 are finite union of languages in 
Lq, they also belong to Lq.

2 implies 3: Let L be a language different from A∗ satisfying (E1), (E2), (E3) and (E4). Let us denote by m the index of 
the syntactic monoid of L. First of all, by Theorem 2, since L satisfies (E1), (E2) and (E3) then there exists:

· a finite set of words (ui)i=1...k ,
· for all i = 1, . . . , k, a prefix of ui denoted by pi ,
· a finite set of integers (ri)i=1...k such that for all i, ri < 2m,
· a finite set of words F ,

such that:

L = (

k⋃
i=1

u�ri
i pi) ∪ F or L = ((

k⋃
i=1

u�ri
i pi) ∪ F )c

A particular case of (E4) is 0 � 1, which means that if 0 ∈ L then L = A∗ . Indeed, for all words u, 0u = 0 ∈ L ⇒ 1u = u ∈ L. 
Furthermore, either 0 ∈ L and L = A∗ or 0 /∈ L. Therefore, we have:

L �= ((

k⋃
i=1

u�ri
i pi) ∪ F )c

Let i = 1, . . . , k, since u�ri
i pi ⊆ L then for all �, um+�

i pi ∈ L and thus uω+�
i pi ∈ L. By (E4), this implies that for all �, u�

i pi ∈ L. 
Thus u∗

i pi ⊆ L. Finally, we obtained that:

L = (

k⋃
i=1

u∗
i pi) ∪ F �

The case of B̃ and L̃
In order to study L and B, we have to remove the “closure under quotients” from the characterisations above. We deal 

with these cases by introducing an intermediate Boolean algebra (resp. lattice) denoted by B̃ (resp. L̃). The latter classes 
are generated by the following languages, which correspond to a certain form of quotients:

Ũ = {(um)∗ur | u ∈ A∗, m > 0, 0 � r < m}
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The study of these two classes is an intermediate step since:

B ⊆ B̃ ⊆ Bq and L ⊆ L̃ ⊆ Lq

Proposition 17. Over a finite alphabet with at least two letters:

1. The class B̃ is defined by equations (E1) and (E6).
2. The class L̃ is defined by equations (E1), (E6), (E5) and (E7).

From this proposition, we can see that the language presented in Example 4 A∗(aa + bb)A∗ is not in B̃, and therefore 
it is neither in L nor in B, since the equation (E6) is not satisfied. Indeed, it is sufficient to consider the word aba, and to 
observe that (aba)2aba ∈ A∗(aa + bb)A∗ but aba /∈ A∗(aa + bb)A∗ .

As for the preceding cases, the languages in B̃ and L̃ can be written in a normal form: if L is a language in B̃ different 
from A∗ , then

L ∪ {1} =
k⋃

i=1

(um
i )∗uri

i or L − {1} =
(

k⋃
i=1

(um
i )∗uri

i

)c

Similarly, if L is a language in L̃ different from A∗ , then

L =
k⋃

i=1

(um
i )∗uri

i

where (ui)i=1,...,k are words and m, (ri)i=1,...,k are integers.

Proposition 18. Let L be a regular language and m be the index of its syntactic monoid. The following properties are equivalent:

1. L ∈ B̃.
2. L satisfies the set of equations (E1) and (E6).
3. If L �= A∗ then there are:

· a finite set of words (ui)i=1...k,
· a finite set of integers (ri)i=1...k such that for all i, 0 � ri < m
such that:

L ∪ {1} =
k⋃

i=1

(um
i )∗uri

i or L − {1} = (

k⋃
i=1

(um
i )∗uri

i )c

Proof. 1 implies 2: By Proposition 12, (um)∗ur satisfies (E6). Moreover,

(um)∗ur = (um)∗(um−r)−1

thus (um)∗ur ∈ Bq and thus by Theorem 2, it satisfies (E1).

3 implies 1: The language {1} belongs to B̃ since it is the intersection of a∗ ∩ b∗ , a and b two different letters. Let L be a 
language such that

L ∪ {1} =
k⋃

i=1

(um
i )∗uri

i or L − {1} = (

k⋃
i=1

(um
i )∗uri

i )c

as given in point 3. By definition, the languages of the form (um)∗ur are in B̃. Finally, thanks to the closure by complement 
and by union we have L ∈ B̃.

2 implies 3: By Proposition 9.1 and 9.2, if a language L satisfies (E1) and (E6) then it also satisfies (E2) and (E3). Hence, 
by Theorem 2, L belongs to Bq. Therefore, if we denote by m the index of its syntactic monoid, there are:

· a finite set of words (ui)i=1...k ,
· for all i = 1, . . . , k, a prefix of ui denoted by pi ,
· a finite set of integers (ri)i=1...k such that for all i, ri < 2m,
· a finite set of words F ,
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such that:

L = (

k⋃
i=1

u�ri
i pi) ∪ F or L = ((

k⋃
i=1

u�ri
i pi) ∪ F )c

Since B̃ is closed under complement, without loss of generality, we assume that:

L = (

k⋃
i=1

u�ri
i pi) ∪ F

in the other case, we can argue on Lc . First, let u ∈ F . Then, u ∈ L, and by (E6), we have uω+1 ∈ L. Therefore, (um)∗u ∈ L. 
For this reason, we can assume that:

L = (

k⋃
i=1

u�ri
i pi) ∪

⋃
u∈F

(um)∗u (�)

Moreover, assume we have a language of the form u�r p included in L. Then we have uω p ∈ L. Furthermore, by (E6), 
(uω p)ω+1 ∈ L and we have:

(uω p)ω+1 = uω(puω)ω p

Because 0 /∈ L and because uω(pum)ω ∈ L, we have uω(pum)ω �= 0. By the equation (E1), there are a word t and two integers 
� and k such that u = tk and pum = t� . Therefore, we have p = t�−km . Since p is a prefix of u, we necessarily have that 
� − km � k. Let s = � − km. Finally we have:

u�r p = (tk)�rts ⊆ L

We define the following set:

R = {r ∈ Z/mZ | there is n congruent to r modulo m such that tn ∈ (tk)�rts}
Let � ∈ R be different from 0. By definition, there exists an integer a such that tam+� ∈ L. Since m is the idempotent power 
of L, we have tω+� ∈ L and by equation (E6), we have (tm)∗t� ⊆ L. If 0 ∈ R then we have (tm)∗ ⊆ L ∪ {1}. Finally, we have 
that for each word ui , there exist a word ti , integers ki, si and a set Ri ⊆ Z/mZ such that

u�ri
i pi = (tki

i )�ri tsi
i ⊆

⋃
�∈Ri

(tm
i )∗t�

i ⊆ L ∪ {1} .

By using equation (�), we obtain that:

L =
⋃
u∈F

(um)∗u ∪
k⋃

i=1

u�ri
i pi

⊆
⋃
u∈F

(um)∗u ∪
k⋃

i=1

⋃
�∈Ri

(tm
i )∗t�

i

⊆ L ∪ {1}
Finally, L has the form given in the proposition. �
Proposition 19. Let L be a regular language and m be the index of its syntactic monoid. The following properties are equivalent:

1. L ∈ L̃.
2. L satisfies the set of equations (E1), (E6), (E5) and (E7).
3. If L �= A∗ then there are:

· a finite set of words (ui)i=1...k,
· a finite set of integers (ri)i=1...k such that for all i, 0 � ri < m
such that:

L =
k⋃

i=1

(um
i )∗uri

i
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Proof. 1 implies 2: By Proposition 12, (um)∗ur satisfies (E5) and (E7). Moreover, (um)∗ur ∈ B̃, thus by Proposition 18, it 
satisfies (E1) and (E6).

3 implies 1: By definition of L̃.

2 implies 3: Let L be a language different from A∗ satisfying (E1), (E6) and (E5). Let us denote by m the index of the 
syntactic monoid of L. First of all, by Proposition 18, since L satisfies (E1) and (E6) then there are:

· a finite set of words (ui)i=1...k ,
· a finite set of integers (ri)i=1...k such that for all i, 0 � ri < m,

such that:

L ∪ {1} =
k⋃

i=1

(um
i )∗uri

i or L − {1} = (

k⋃
i=1

(um
i )∗uri

i )c

The set of equations (E5) means that if 0 ∈ L then L = A∗ . Indeed, for all words u, 0u = 0 ∈ L ⇒ 1u = u ∈ L. So 0 /∈ L and 
thus we are in the case where:

L ∪ {1} =
k⋃

i=1

(um
i )∗uri

i

If 1 ∈ L then L = ⋃k
i=1(um

i )∗uri
i . Otherwise, there are two possibilities for 1 to be in 

⋃k
i=1(um

i )∗uri
i . First, if for some i, ri = 0, 

then (um
i )�1 ⊆ L and by (E7), 1 also belongs to L which is a contradiction. Secondly, if for some i, ui = 1 we can just 

remove (um
i )∗uri

i = {1} from the second language to obtain the correct form:

L =
k⋃

i=1

(um
i )∗uri

i �

The case of L
Finally, we can characterise the classes L and B by restricting the set of integers ri that can be obtained in the normal 

form of L̃ and B̃. Regarding L, one can prove that the only possible choice for ri is 0. Thus, a language L different from A∗
in L is of the form L = ⋃k

i=1 u∗
i .

Unlike the class L, the case of B can not be deduced directly from the case of B̃ and it is much more complicated. It is 
the subject of the next section.

Theorem 4. Let L be a regular language. The following properties are equivalent:

1. L ∈L.
2. L satisfies the set of equations (E1), (E4) and (E8).
3. If L �= A∗ then there is a finite set of words (ui)i=1...k such that:

L =
k⋃

i=1

u∗
i

Proof. 1 implies 2: By Proposition 10, u∗ satisfies (E1), (E4), and (E8).

3 implies 1: By definition of Lq.

2 implies 3: Let L be a language different from A∗ satisfying (E1), (E4) and (E8). Let us denote by m the index of its 
syntactic monoid and by ϕ its syntactic morphism. By Propositions 9.3, 9.4 and 9.5, L also satisfies equations (E5), (E6)
and (E7). By Proposition 19, since L satisfies (E1), (E5), (E6) and (E7) then there are:

· a finite set of words (ui)i=1...k ,
· a finite set of integers (ri)i=1...k such that for all i, 0 � ri < m,

such that:

L =
k⋃

(um
i )∗uri

i

i=1



JID:YINCO AID:4386 /FLA [m3G; v1.240; Prn:20/07/2018; 15:55] P.14 (1-20)

14 L. Daviaud, C. Paperman / Information and Computation ••• (••••) •••–•••
Consider i ∈ {1, . . . , k} and let di = gcd(m, ri). Since uri
i belongs to L we have, by equation (E8), that (uri

i )∗ ⊆ L. There exists 
a positive integer b such that bri is congruent to di modulo m. Because m is the index of the syntactic monoid of L, we 
have:

ϕ(ubri
i ) = ϕ(um+di

i ) = ϕ̂(uω+di
i )

Thus, uω
i udi

i ∈ L and, by equation (E4), udi
i ∈ L. By applying equation (E8), we have that (udi

i )∗ ⊆ L, and finally we can 
conclude since:

L =
k⋃

i=1

(um
i )∗uri

i ⊆
k⋃

i=1

(udi
i )∗ ⊆ L �

5. The case of the Boolean algebra B

We enter here the most intricate part of the description of the classes generated by the languages of the form u∗ . 
The idea is to restrict the possible integers ri we can obtain in the description of B̃. For that, we will define equivalence 
relations over the integers. Once this will be done, the main difficulty will be to translate properties over integers into 
profinite equations. In order to do that, we will introduce profinite numbers. This issue is addressed in Section 5.1 which 
first defines which sets of integers are allowed for the ri and then translates it into equations. Finally, Section 5.2 aggregates 
all these notions to give the characterisation of B.

5.1. Equivalence classes over N and profinite numbers

Let m be an integer, and r and s be in {0, . . . , m − 1}, let us define r ≡m s if and only if gcd(r, m) = gcd(s, m). Observe 
that ≡m is an equivalence relation. Intuitively, a language in B with m as the index of its syntactic monoid, will not be able 
to separate two integers that are equivalent with respect to ≡m . More precisely, let L be a language in B with m as the 
index of its syntactic monoid and r ≡m s. Then for all words u and for all k, k′ , we have ukm+r ∈ L if and only if uk′m+s ∈ L.

Example 5. We introduce the language L = (a2)∗ − (a6)∗ . This language is, by definition, in B. The index of its syntactic 
monoid is 6. Classes for ≡6 are {1, 5}, {2, 4}, {3} and {0}. Thus, L cannot separate a word in (a6)∗a2 from a word in (a6)∗a4. 
Therefore, since (a6)∗a2 is in L, (a6)∗a4 is also in L. Since L belongs to B, it also belongs to B̃ and we have a convenient 
normal form given by Proposition 17:

L = (a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4

The equivalence relation ≡m allows us to give the form of the languages in B. The next step is to translate it in terms 
of equations. The difficulty comes from the fact that ≡m depends on the parameter m that represents the index of the 
syntactic monoid of a given language. So, this cannot be directly translated into a set of equations that are supposed to not 
depend on a specific language.

Profinite numbers. Consider a one-letter alphabet B = {a} and the profinite monoid B̂∗ . There is an isomorphism from B∗
to N that associates a word to its length. Then there is a unique set N̂ and a unique isomorphism ψ : B̂∗ → N̂ such that 
N ⊆ N̂ and ψ̂ coincides with ψ on N. Elements of N̂ are called profinite numbers. They are limits of sequences of integers, 
in the sense of the topology of the set of words on a one-letter alphabet. Given a word u, and a profinite number α, uα

corresponds to the profinite word that is the limit of the words uαn where (αn)n is a sequence of integers converging to α.
Let P = {p1 < p2 < . . . < pn < . . .} be a cofinite sequence of prime numbers. That is, a sequence of prime numbers 

such that only a finite number of prime numbers are not used in the sequence. Consider the sequence defined by zPn =
(p1 · · · pn)n! . The sequence (zPn )n>0 is converging in N̂ and we denote by zP its limit.

We can give now the last set of equations needed to characterise B and that conveys the notion of equivalence over N
defined above. Denote by 
 the set of pairs of profinite numbers (dzP , dpzP ) satisfying the three following conditions:

· P is a cofinite sequence of prime numbers,
· p ∈P ,
· if q divides d then q /∈P .

Let us define the set of equations (E9) by:

xα ↔ xβ for all (α,β) ∈ 
 (E9)

We first prove that a language u∗ satisfies this set of equations. Let us denote by dm
the equivalence class of d for ≡m .
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Proposition 20. Let u be a primitive word and m be an integer, then (um)∗ satisfies the set of equations (E9).

Proof. Let (dzP , dpzP ) be in 
 and x be a word. Let L = (um)∗ . We suppose that xdzP ∈ L. Then, there is k such that 
x = uk and moreover for all n large enough, kdzPn is a multiple of m. Thus kdpzPn is also a multiple of m, and thus xdpzP ∈ L. 
Conversely, suppose that xdpzP ∈ L, then there is k such that x = uk and moreover for all n large enough, kdpzPn is a multiple 
of m. Finally, kdzPn+1 is a multiple of kdzPn pn+1 since p ∈ P , that is a multiple of kdpzPn that is a multiple of m. Thus, for n
large enough, kdzPn+1 is a multiple of m, and xdpzP ∈ L. �
5.2. Characterisation of B

The following result combines the notions given in Section 5.1 and characterises the class B.

Theorem 5. Over a finite alphabet with at least two letters, the class B is defined by equations (E1), (E6) and (E9).

Let us first give a sketch of the proof. First, we have proven that u∗ satisfies (E1), (E6) and (E9).
The reverse implication is proved in two steps. First, we prove that if a language L is different from A∗ and satisfies (E1), 

(E6) and (E9), then just like for the other classes, it has a normal form:

L ∪ {1} =
k⋃

i=1

⋃
r∈Si

(um
i )∗ur

i or
(
L − {1})c =

k⋃
i=1

⋃
r∈Si

(um
i )∗ur

i

where m is an integer, (ui)i=1,...,k is a finite set of words, and Si is an equivalence class of ≡m . We start by using the first 
part of Proposition 17 to prove that L belongs to B̃. So L can be written as:

L ∪ {1} =
k⋃

i=1

(um
i )∗uri

i or L − {1} = (

k⋃
i=1

(um
i )∗uri

i )c

We prove that for all t ≡m r, ur belongs to L if and only if ut belongs to L. The idea is the following: Let ϕ be the syntactic 
morphism of L, consider any cofinite sequence of prime numbers P . If all the prime divisors of m are in P , then for all 
n large enough, m divides zPn and thus for all words x, ϕ̂(xdzP ) = ϕ̂(xω) = ϕ̂(xdpzP ). If none of the prime divisors of m is 
in P , then for all n large enough, zPn is of the form km + 1. Then ϕ̂(xdzP ) = ϕ̂(xω+d) and ϕ̂(xdpzP ) = ϕ̂(xω+dp). Finally, d
and dp under the conditions that define the set 
, represent integers in the same equivalence class with respect to m that 
are then linked by (E9). Other situations are combinations of these two.

Once we have the normal form for L, what is left is to prove that a language that can be written in this normal form 
belongs to B. This is done by proving that:⋃

p∈rm

(um)∗up = (ud)∗ −
⋃
k s.t.

0�k�m
gcd(k, m

d ) �=1

(ukd)∗

where rm is the equivalence class of r for ≡m and d = gcd(m, r).
Now let us give the complete proof.

Proposition 21. Let L be a language and m be the index of its syntactic monoid. Suppose that there are an integer k and pairwise 
distinct words u1, . . . , uk such that:

L =
k⋃

i=1

⋃
r∈Si

(um
i )∗ur

i

where for all i, Si ⊆ {0, . . .m − 1}. Moreover suppose that L satisfies (E6) and (E9). Then, for all i and all r ∈ Si , one has rm ⊆ Si .

Proof. Let i ∈ {1, . . . , k} and r ∈ Si , let us prove that rm ⊆ Si . First, if r = 0 then rm = {0} ⊆ Si . Otherwise, let d = gcd (r,m). 
By definition,

rm = {d� | 0 < � <
m

d
, gcd(�,

m

d
) = 1}

Let 0 < � < m be such that gcd(�, m ) = 1. We will use the following theorem:
d d
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Theorem 6 (Dirichlet’s theorem on arithmetic progressions). For all positive integers a, b such that gcd(a, b) = 1, there are infinitely 
many prime numbers congruent to a modulo b.

By this theorem, there is a prime number p > m such that p is congruent to � modulo m
d . Consequently, dp is congruent 

to d� modulo m. Let us consider P the cofinite sequence of prime numbers that do not divide m. In particular, p ∈ P and 
for all q that divide d, q does not belong to P . Moreover, for n large enough, zPn is congruent to 1 modulo m. Indeed, 
by definition, a prime number p ∈ P does not divide m and thus gcd(m, p) = 1. Then there exist n′ < m such that pn′

is 
congruent to 1 modulo m (n′ is the order of the cyclic group formed by the elements t modulo m, such that gcd(t, m) = 1). 
Consider n > m! then for all p ∈P , pn is congruent to 1 modulo m and so is zPn . Then one gets:

ud
i ↔ uω+d

i (by equation (E6))

↔ udzP
i

↔ udpzP
i (by equation (E9))

↔ uω+d�
i

↔ ud�
i (by equation (E6))

Hence, since r ∈ Si then d ∈ Si and finally rm ⊆ Si . �
Proposition 22. Let u be a word and r < m be integers. Then:⋃

p∈rm

(um)∗up ∈ B

Proof. By definition, there is d such that for all p ∈ rm , gcd(p, m) = d. Let us show that:⋃
p∈rm

(um)∗up = (ud)∗ −
⋃
k s.t.

0�k�m
gcd(k, m

d ) �=1

(ukd)∗

which will conclude the proof. For the first inclusion, let p ∈ rm , and let � be an integer. We have the following:

· the integer d divides �m + p. Thus u�m+p ∈ (ud)∗ ,
· let k be an integer such that gcd(k, md ) = c �= 1. The integer c divides both k and m

d . If k divides �m
d + p

d then necessarily 
c divides also p

d . But gcd(m
d , p

d ) = 1. Hence this is impossible. So k does not divide �m
d + p

d , and so kd does not divide 
�m + p and finally

u�m+p /∈
⋃
k s.t.

0�k�m
gcd(k, m

d ) �=1

(ukd)∗

That is why:

u�m+p ∈ (ud)∗ −
⋃

k s.t.
0�k�m

gcd(k, m
d ) �=1

(ukd)∗

As for the reverse inclusion, let � be an integer such that:

ud� ∈ (ud)∗ −
⋃

k s.t.
0�k�m

gcd(k, m
d ) �=1

(ukd)∗ (�)

One has �d = qm + p for some 0 � p < m (euclidean division). It remains to prove that this p belongs to rm that is to say 
that gcd(p, m) = d. First d divides m and then p. Then one gets � = q m

d + p
d . So, a divisor of p

d and m
d divides �. Let k be 

such an integer then by (�), either k > m or gcd(k, md ) = 1 and then k = 1. So the only divisor of p
d and m

d is 1, and so we 
get gcd(p, m) = d and then
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ud� ∈
⋃

p∈rm

(um)∗up �

Theorem 7. Let L be a regular language and m be the index of its syntactic monoid. The following properties are equivalent:

1. L ∈ B.
2. L satisfies the sets of equations (E1), (E6) and (E9).
3. If L �= A∗ then there are:

· a finite set of pairwise distinct words (ui)i=1...k,
· for each i, a finite set of integers Si that is a finite union of equivalence classes of ≡m,
such that:

L ∪ {1} =
k⋃

i=1

⋃
r∈Si

(um
i )∗ur

i or L − {1} = (

k⋃
i=1

⋃
r∈Si

(um
i )∗ur

i )
c

Proof. 1 implies 2: By Proposition 10, u∗ satisfies the sets of equations (E1), (E6) and (E9).

2 implies 3: Suppose that L satisfies (E1), (E6) and (E9) and is different from A∗ . By Theorem 2, there is an integer k � 1
and for all i ∈ {1, . . . , k}, a word ui and a non-negative integer ri � m such that:

L =
k⋃

i=1

(um
i )∗uri

i or L = (

k⋃
i=1

(um
i )∗uri

i )c

where m is the index of the syntactic monoid of L. Suppose that we are in the first case and that L = ⋃k
i=1(um

i )∗uri
i , 

otherwise we can argue on Lc that satisfies the same equations. One can reformulate: there are an integer k � 1, a finite 
sequence of pairwise distinct words (ui)i=1,...,k and sets of integers Si ⊆ {1, . . . , m} such that: L = ⋃k

i=1
⋃

r∈Si
(um

i )∗ur
i . Since 

L satisfies (E6) and (E9) then by Proposition 21, for all i and all r ∈ Si , rm ⊆ Si . Thus each Si is a finite union of equivalence 
classes which concludes the proof.

3 implies 1: By Proposition 22 and the fact that B is closed under union. �
6. Decidability

The characterisations that are given in Theorems 1 and 5 yield as a counterpart the decidability of the classes Bq, Lq, L
and B: given a regular language L, one can decide if L belongs to said classes. Every single equation is effectively testable. 
The main issue is to test an infinite set of equations in finite time. The idea is to test the equations in the syntactic monoid 
of L that is finite and thus test a finite number of equations. The first step is to compute M , the syntactic monoid of L, m
its index, ϕ the syntactic morphism and P , the syntactic image of L. They are all computable from the minimal automaton 
of L. Then, it is sufficient to check if the sets of equations are satisfied directly in M and P , which are finite. More precisely:
(E4): for all x, y, z ∈ M , yxmz ∈ P ⇒ yz ∈ P
(E5): particular case of (E4)
(E6): for all x ∈ M , for all 0 < � < m, x� ∈ P ⇔ xm+� ∈ P
(E7): particular case of (E4)
(E8): for all x ∈ M , for all 0 < � � 2m, x ∈ P ⇒ x� ∈ P
(E9): thanks to the notion of equivalence classes given in Section 5.1, testing equations in (E9) is the same as testing that 
for all x ∈ M , for all 0 � r, s < m such that r ≡m s, xr ∈ P ⇔ xs ∈ P .

It is much more difficult to translate sets of equations (E1), (E2) and (E3) in M since conditions “xy �= yx”, “y /∈ P x” and 
“y /∈ Sx” cannot be translated directly in M .
(E1): consider x, y ∈ M such that xm ym �= 0. One has to check that for all words u ∈ ϕ−1(x), v ∈ ϕ−1(y), uv = vu.
(E2): consider x, y ∈ M such that xm y �= 0. One has to check that for all words u ∈ ϕ−1(x), v ∈ ϕ−1(y), v ∈ Pu .
(E3): same as (E2)

Let us now prove the decidability of the sets of equations (E1) and (E2). We are going to prove that one can decide if 
a given language L satisfies these sets of equations. Consider a non empty regular language L, its syntactic monoid M , its 
syntactic morphism ϕ and its syntactic image P . We will use the following basic lemma, which can be found for example 
in [7]:

Lemma 3. For all words u, v ∈ A∗ , if uv = vu then there is a primitive word w ∈ A∗ such that u ∈ t∗ and v ∈ t∗ .

First let us remind (E1):

xω yω = 0 for x, y ∈ A∗ such that xy �= yx (E1)
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The language L satisfies (E1) if and only if for all x, y ∈ M such that xω yω �= 0, for all words u ∈ ϕ−1(x), v ∈ ϕ−1(y), one 
has uv = vu. For proving the decidability of this problem, it is sufficient to prove the decidability of the following one:

Given two non empty regular languages L and K , for all words u ∈ L and v ∈ K , are uv and vu equal?

Moreover, as shown by the following lemma, this problem is equivalent to checking if for all words u ∈ L ∪ K and 
v ∈ L ∪ K , uv = vu.

Lemma 4. For all words u, v, w with w �= 1, if uw = wu and v w = w v then uv = vu.

Proof. Suppose that uw = wu and v w = w v . Then, by using Lemma 3, there are two primitive words t, s ∈ A∗ such that 
u, w ∈ t∗ and v , w ∈ s∗ . Thus w ∈ t∗ ∩ s∗ . But since s and t are primitive, necessarily s = t . Finally, u, v , w ∈ t∗ = s∗ and 
uv = vu. �

Thus, it is sufficient to consider the problem:

Given a regular language L, for all words u, v ∈ L, uv = vu?

Finally, we prove that a language satisfies this property if and only if it is a subset of a language t∗ for a word t . This 
property is decidable: consider the smallest word s ∈ L with respect to the shortlex order and t the (unique) primitive word 
such that s ∈ t∗ . It is sufficient to check that L ⊆ t∗ .

Lemma 5. Let L be a regular language. For all u, v ∈ L, uv = vu if and only if there is t ∈ A∗ such that L ⊆ t∗ .

Proof. ⇐: clear

⇒: Let u ∈ L − {1}, denote by tu the (unique) primitive word such that u ∈ t∗
u . Let v ∈ L, since uv = vu then, thanks to 

Lemma 3, there is a primitive word t such that u, v ∈ t∗ . Necessarily, t = tu = tv . Thus, L ⊆ t∗ . �
Let us now remind the equation (E2):

xω y = 0 for x, y ∈ A∗ such that y /∈ P x (E2)

The language L satisfies (E2) if and only if for all x, y ∈ M such that xω y �= 0, for all words u ∈ ϕ−1(x), v ∈ ϕ−1(y), one has 
v ∈ Pu . For proving the decidability of this problem, it is sufficient to prove the decidability of the following one:

Given two regular languages L and K , for all words u ∈ L and v ∈ K , does v belong to Pu?

We prove that this problem is decidable by distinguishing two cases. First, we deal with the case where K is finite. Let 
v ∈ K . For all u ∈ L such that |u| � |v|, check that v ∈ Pu . Otherwise, if |u| > |v|, the condition v ∈ Pu means that v is a 
prefix of u. So, one can just test if {u ∈ L | |u| > |v|} is a subset of v A∗ . Second, we assume that K is infinite. Then, as shown 
in the next lemma, L satisfies that for every u, w ∈ L we have uw = wu.

Lemma 6. Let u, v, w words such that v ∈ Pu, v ∈ P w and |v| > 2 max(|u|, |w|). Then, uw = wu.

Proof. Let v ∈ Pu ∩ P w . Then there are two non negative integers �, k, a prefix of u, pu and a prefix of w , pw such that 
v = u� pu = wk pw (�). Since |v| � 2 max(|u|, |w|) then min(�, k) � 2. Let us suppose that � � k (and thus |w| � |u|). By (�) 
and since � � 2, there are two words w1, w2 and a non negative integer p such that:

· w = w1 w2,
· u = (w1 w2)

p w1,
· w2 w1 is a prefix of u.

Then, w1 w2 = w2 w1, and uw = wu. �
Moreover, thanks to Lemma 5, a language L satisfies for every u, w ∈ L, uw = wu if and only if it is a subset of a 

language t∗ for a word t . The first step is to check that L ⊆ t∗ and to compute such a word t . Finally, if L ⊆ t∗ , the two 
following conditions are clearly equivalent:

1. For all words u ∈ L and v ∈ K , v ∈ Pu .
2. For all words v ∈ K , v ∈ Pt .



JID:YINCO AID:4386 /FLA [m3G; v1.240; Prn:20/07/2018; 15:55] P.19 (1-20)

L. Daviaud, C. Paperman / Information and Computation ••• (••••) •••–••• 19
Thus, it is now sufficient to check that K ⊆ Pt , which is decidable.

7. The case of a unary alphabet

This section summarises results for a unary alphabet. In this case, the syntactic monoid of a language of the form 
(ak)∗ has no zero and moreover the construction of ρA , given in [1,12] for larger alphabets, does not make any sense 
for a singleton alphabet. To extend the proof of the two-letter case, we will use the fact that a regular language over 
the alphabet A = {a} is a finite union of languages of the form (aq)∗ap for non negative integers p and q. Observe that 
finite languages are those with q = 0. We can derive from proofs made for the general case the form of languages and the 
equations characterising Bq, Lq, L and B. The one letter case Bq, Lq, L and B could be adapted from the proof but is not, 
unfortunately, a straightforward consequence. In particular, it is needed to redo some of the proof.

The major difference with the two-letter case is that Bq can no longer capture the finite languages (except the empty 
language and the language containing only the empty word). We will show in Theorem 8 that it is characterised by the 
equations:

xω+1 = x (E10)

Moreover it contains languages that are a finite union of languages of the form (aq)∗ap for q > 0 and 0 � p � q (plus the 
language {1}).

Classes Lq, L and B are restrictions of Bq in the same way as in the two-letter case. In Theorem 8, we will prove the 
following characterisations.

• Languages in Lq are a finite union of languages of the form (aq)∗ap for q > 0 and 0 � p < q (plus the language {1}). 
The class Lq is characterised by equations (E4) and (E10).

• Languages in L are a finite union of languages of the form (aq)∗ for a non negative integer q, and L is characterised by 
equations (E4), (E8) and (E10).

• Languages in B are a finite union of languages of the form ∪p∈S (aq)∗ap for a positive integer q and S an equivalence 
class of ≡q and languages of the form (aq)�1 for a non negative integer q. The class B is characterised by equations 
(E9) and (E10).

The syntactic monoid of (aq)∗ , for a positive integer q, is the cyclic group Z/qZ. We will use the multiplicative notations: 
1, a, . . .aq−1. The syntactic morphism associates a word ap to ap mod q . Thus the only idempotent in the syntactic monoid of 
(aq)∗ is the image of the empty word 1 whose preimage is the language (aq)∗ .

The syntactic monoid of {1} contains two elements, 1 and 0, both idempotent. The element 1 is the image of the empty 
word, while 0 is a zero and is the image of all non empty words.

Proposition 23. For all non negative integers q, the language (aq)∗ satisfies the sets of equations (E4), (E8), (E9), (E10).

Proof. (E4): It is the same proof as in the two-letter case given in Proposition 10.

(E8): By definition. It is the same proof as in the two-letter case given in Proposition 10.

(E9): It is the same proof as in the two-letter case given in Proposition 20.

(E10): If q = 0, that is to say if we consider the language {1}, the two elements of the syntactic monoid satisfy the 
equation since 0ω+1 = 0 and 1ω+1 = 1. If q �= 0, then the syntactic monoid of (aq)∗ contains only one idempotent (the 
image of 1, or aq). If x is an element of the cyclic group, then xω+1 = 1x = x. �
Proposition 24. For all q > 0, 0 � p � q, the language (aq)∗ap belongs to Bq.

Proof. If 0 � p < q, then (aq)∗ap = (aq)∗(aq−p)−1, thus belongs to Bq. If p = q, then (aq)∗ap = (aq)+ = (aq)∗ − {1} ∈ Bq. �
Theorem 8. Over a unary alphabet:

1. The class Bq is defined by equations (E10).
2. The class Lq is defined by equations (E4) and (E10).
3. The class L is defined by equations (E4), (E8) and (E10).
4. The class B is defined by equations (E9) and (E10).

Proof. By Proposition 23, the languages that generate respectively Bq, Lq, L and B satisfy (E4), (E8), (E9), (E10). What 
remains to be done is to prove that a regular language that satisfy (E10) (resp. plus (E4), (E8), (E9)) belongs to Bq (resp. 
Lq, L, B).

1. We will use the well-known form of regular languages over a one-letter alphabet, given in the following Lemma.
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Lemma 7 (Folklore). A regular language over the alphabet {a} is a finite union of languages of the form (aq)∗ap for two non negative 
integers q and p.

Let L be a regular language satisfying (E10). Let m denote the index of the syntactic monoid of L. First, for p > 0, if ap ∈ L
then (am)∗ap ∈ L thanks to (E10). Then by using Lemma 7, L is a finite union of languages of the form (aq)∗ap for q > 0 and 
p � 0 and of the language {1}. Now, suppose that (aq)∗ap ⊆ L for some q > 0 and p > q, then a2mqap−q ∈ L and by (E10), 
ap−q ∈ L. Thus, (aq)∗ap−q ⊆ L. Thus, finally L is a finite union of languages of the form (aq)∗ap for q > 0 and 0 � p � q and 
of the language {1}. We can now conclude by using Proposition 24 that L ∈ Bq.

2. Let L be a regular language satisfying (E10) and (E4). By the previous item, L ∈ Bq, thus is a finite union of languages 
of the form (aq)∗ap for q > 0 and 0 � p � q and of the language {1}. Let q > 0. Suppose that (aq)�1 ⊆ L. Then by (E4), 
1 ∈ L, and thus (aq)∗ ⊆ L. So, finally, L is a finite union of languages of the form (aq)∗ap for q > 0 and 0 � p < q and of the 
language {1}. And for all q > 0 and 0 � p < q, (aq)∗ap = (aq)∗(aq−p)−1 ∈Lq. Thus L ∈Lq.

3. and 4. The proofs of these two items are similar to their generic case. The proof of item 3, is the same as the one given 
in Theorem 4. As for the proof of item 4., it is similar to the one given in Theorem 7 in the two-letter case. �
8. Conclusion

This paper gives an equational description of the lattice and Boolean algebra generated by languages of the form u∗; as 
well as of their closures under quotients. These descriptions illustrate the power of the topological framework introduced 
by [5]. In particular, it gives us tools to describe in an effective way these classes of languages.

The next step could be to investigate either the case of the classes of languages generated by F ∗ where F is a finite 
set of words, or the case of the classes generated by u∗

1u∗
2 . . . u∗

k where u1, . . . , uk are words. An answer to either of these 
questions will help us gain a better understanding of the phenomena that appear in the study of the variety generated by 
the languages u∗ and of the generalised star-height problem.
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