
Schema validation via streaming circuits∗

Filip Murlak
University of Warsaw

fmurlak@mimuw.edu.pl

Charles Paperman
University of Warsaw

paperman@mimuw.edu.pl

Michał Pilipczuk
University of Warsaw

michal.pilipczuk@mimuw.edu.pl

ABSTRACT
XML schema validation can be performed in constant mem-
ory in the streaming model if and only if the schema admits
only trees of bounded depth—a mild assumption from the
practical view-point. In this paper we refine this analysis by
taking into account that data can be streamed block-by-block,
rather then letter-by-letter, which provides opportunities to
speed up the computation by parallelizing the processing
of each block. For this purpose we introduce the model of
streaming circuits, which process words of arbitrary length in
blocks of fixed size, passing constant amount of information
between blocks. This model allows us to transfer fundamen-
tal results about the circuit complexity of regular languages
to the setting of streaming schema validation, which leads
to effective constructions of streaming circuits of depth loga-
rithmic in the block size, or even constant under certain as-
sumptions on the input schema. For nested-relational DTDs,
a practically motivated class of bounded-depth XML schemas,
we provide an efficient construction yielding constant-depth
streaming circuits with particularly good parameters.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design; F.4.3
[Mathematical Logic and Formal Languages]: For-
mal Languages

General Terms
Theory, Algorithms

Keywords
semi-structured data, XML, streaming, schema valida-
tion, Boolean circuits, nested-relational DTDs

1. INTRODUCTION
Over tree-structured data, like XML documents or

JSON files, schemas impose restrictions on the struc-
ture of the trees modelling the data. Popular schema

∗These results were obtained when Charles Paperman and
Micha l Pilipczuk held post-doc positions at the Warsaw Cen-
tre of Mathematics and Computer Science. Micha l Pilipczuk
was supported by the Foundation for Polish Science (FNP)
via the START stipend programme. Filip Murlak was sup-
ported by Poland’s National Science Centre grant no. UMO-
2013/11/D/ST6/03075.

formalisms, like DTDs and especially XML Schema, are
able to express very complex properties, bringing their
expressive power close to tree automata, which are often
used as theoretical abstractions of schemas. With such
expressive power, the task of schema validation—that
is, verifying that a given data instance conforms to the
schema—is not entirely trivial even if we have direct
access to the whole data instance. When the data are
streamed, schema validation becomes a major challenge.

In their seminal paper [28], Segoufin and Vianu con-
sider streaming validation in constant memory. An
algorithm over streamed data that works in constant
memory can be seen as a finite automaton. Whether
such an algorithm exists for a given schema depends
on whether the set of word representations of the in-
stances of the schema is a regular language. Segoufin and
Vianu show that the word representation of a regular
tree language (covering all popular schema formalisms)
is regular if and only if there exists a uniform bound on
the depth of the trees in the language. In this paper
we refine this result by looking more closely at the way
the data are streamed. Due to the result of Segoufin
and Vianu, we focus predominantly on tree languages
of bounded depth.

Our starting point is the observation that data need
not be fed to the algorithm letter-by-letter. For instance,
if the data stream serves as an abstraction of sequential
access to a mass storage device, the algorithm is fed en-
tire blocks of data that are fetched to a moderately-sized
cache. This requires evaluating the finite automaton
over a word read in block-sized portions. It can still be
done letter-by-letter, giving time linear in the size of the
block, but we would like to do better, assuming certain
ability to parallelize computation. As a model of paral-
lelism we choose Boolean circuits. The most important
reason is that their relation with regular languages is well
understood and documented [1, 17, 18, 29], but Boolean
circuits have several other advantages. On one hand,
they are very close to hardware implementation: from a
Boolean circuit of small depth one can directly obtain a
hardware description that could be compiled into, say,
an FPGA. On the other hand, Boolean circuits are also
a commonly accepted theoretical model for higher-level
parallelism, providing abstraction for various concrete
practical models. For example, on a multi-core machine
different cores could be assigned to evaluating different

parts of the circuit. We remark that combining the
challenges of streaming data access and parallelization
has been considered from the practical perspective [3,
4, 10, 15], in particular in the context of the standard
MapReduce approach (see e.g. [21]); however, to the
best of our knowledge, hardly any theoretical models
have been proposed so far.

In order to reconcile the random-access parallelism of
Boolean circuits with the streaming setting, we intro-
duce a model of computation called streaming circuits.
Intuitively, a streaming circuit takes a block of the input
word together with additional feedback information of
constant size (the state of the underlying finite automa-
ton) and outputs updated feedback. This model allows
us to talk about the complexity of streaming algorithms
in a way that does not abstract away the size of the
block, and to transfer the huge body of results on the
circuit complexity of regular languages to the streaming
setting. It also avoids the inherent flaw of the classical
Boolean circuit setting: the nonuniformity. While hav-
ing a separate circuit for each size of the input data is
entirely impractical, in our setting this is not an issue
any more, as the circuit is nonuniform in the block size,
which can be chosen and fixed in advance.

Any finite automaton can be transformed into a stream-
ing circuit of chosen block size. The challenge is to get
the circuit as simple as possible. In the context of schema
validation we are interested in how the complexity of tree
language is reflected in the streaming circuits recognizing
their word encodings. As we shall see, one can always
build an NC1-streaming circuit for any bounded-depth
regular tree language. That is, in the block-by-block
access model, one can efficiently do streaming validation
in parallel—by a circuit that has polynomial size, con-
stant fan-in, and logarithmic depth. Can we do better
than that? For any class C of circuits one can ask about
streaming C-circuits for regular tree languages. A full
positive answer to this question should include:

• an algorithm do decide if a given tree language has
a streaming C-circuit;

• an algorithm to construct a recognizing C streaming
circuit, if it exists; and

• a syntactic fragment (a restricted schema language)
that corresponds to languages that can be recog-
nized with a C streaming circuit.

From the practical point of view, the crucial part of
the answer is a restricted schema language guaranteeing
feasibility and an efficient algorithm to build the circuit
from the schema definition in this restricted language.
Ideally, the schema language should cover all feasible
schemas, but this should not be achieved at the expense
of its simplicity and usability.

We consider two restricted classes of circuits: AC0

and WLAC0. Recall that AC0 comprises circuit families
with polynomial size and constant depth bounds, and an
AC0 circuit family is in WLAC0 (for wire-linear AC0)
if the number of wires is bounded linearly. Unlike for
NC1, not all bounded-depth regular tree languages admit
AC0 streaming circuits, but we can decide effectively

if a given bounded-depth regular language admits one.
We also show that if one additionally assumes that the
tree language is definable in first order logic, then the
answer is always affirmative. For a practically relevant
class of languages defined by nested-related DTDs [2],
we provide an efficient construction of AC0 streaming
circuits with particularly good properties. For WLAC0

we observe that one cannot even check the correctness of
the usual XML encodings of bounded-depth trees. We
propose a new encoding, enriched with the information
about ancestors of nodes. Under the new encoding
we can validate nested-relational schemas with WLAC0

streaming circuits. We also show that this encoding
can be computed from the usual encoding by an AC0

streaming circuit that does not depend on the schema,
only on the depth and the alphabet.

2. STREAMING CIRCUITS
In this article we use several classical classes of circuits.

We briefly recall basic definitions and refer to the book
of Straubing [29] for a more detailed presentation.

Basics of circuit complexity. We work with Boolean
circuits with AND, OR, and NOT gates, taking as input
words over alphabet Σ = {a1, a2, . . . , ak}. The letters
of the input word are encoded in unary; that is, each
input gate is modelled with k binary gates, and letter ai
is encoded as the binary sequence 0i−110k−i. A family

(Cn)n∈N

of circuits recognizes a language L ⊆ Σ∗ if Cn has n
input gates and a single binary output gate, and returns
1 if and only if the input word is in L. We shall refer to
this model of recognition as the random-access model.
Whenever we consider the size of the circuit, we mean
the number of gates.

Since we consider mainly regular languages (of words
and of trees), we restrict ourselves to languages recogniz-
able with NC1 circuit families: Boolean circuit families
of polynomial size, logarithmic depth and bounded fan-
in. Two other classes of interest are AC0 circuit families,
which have polynomial size, constant depth and un-
bounded fan-in, and WLAC0 circuit families, which are
AC0 circuit families with a linear number of wires (hence,
also gates). The interaction of these classes with the
class of regular languages is well understood, and we
will use this knowledge to design adequate devices in
the context of streaming schema validation.

We shall say that a language is in class C if it is recog-
nized by a C circuit family. Some important examples
separating the three classes described above:

• the parity language (c + ac∗a)∗ is in NC1 (with
linear-size circuits) but not in AC0 [12];

• (c+ ac∗b)∗ is in AC0 (with quadratic-size circuits)
but not in WLAC0 [17].

Streaming circuits. In the streaming circuit setting, a
single circuit is used to recognize words of all lengths,

by processing them sequentially in blocks of fixed size
with the help of a feedback mechanism.

A streaming circuit over alphabet Σ with block size n
and feedback size m is a circuit C with n input gates,
m feedback gates and m output gates, together with an
acceptor circuit A with m input gates and 1 output gate.
The computation of such a circuit on an input word w
is carried out in stages. In each stage the circuit C is
given the output from the previous stage (initially, the
bit sequence 10m−1) and the next size n block of the
input word (in unary encoding). The output of the last
stage is fed to the acceptor circuit A and the word w
is accepted if and only if the acceptor circuit A returns
1. If the last block of the input word is shorter than n
symbols, a designated padding symbol $ (encoded as a
sequence of zeros) is used to fill it up. More formally,

let u0 = 10m−1 and for i <
⌈
|w|
n

⌉
let

ui+1 = C(ui, wni+1wni+2 . . . wni+n)

where wj = $ for j > |w|; the word w is accepted if

A(ud |w|
n e) = 1 .

a1 a2 . . . aqb1b1 b2b2 bnbn

1 0 . . . 0

a1 a2 . . . aq

∨

∧ ∧

Such a streaming circuit can be interpreted as a de-
terministic automaton over the alphabet Γ = Σn: the
state space is {0, 1}m with the initial state 10m−1, and
the transition function and the set of accepting states
are given by circuits C and A. Consequently, languages
recognized by streaming circuits are regular.

In fact, streaming circuits give precise description of
the implementation of finite automata over words read
by fixed-size blocks. Indeed, if you take an automaton
and make it read blocks of n letters instead of one letter,
you obtain an automaton with the same state space over
the alphabet Σn, but with the set of transitions growing
exponentially with n (if |Σ| ≥ 2). Circuits allow us to
represent (and carry out) transitions more efficiently.

We can therefore talk about streaming-circuit com-
plexity of regular languages: a regular language L has
streaming-circuit complexity C if for some m there exists
a C circuit family (Cn)n∈N with m feedback gates and
m output gates and an acceptor circuit A with m input
gates, such that for each n, the streaming circuit (Cn, A)

recognizes L. We say that (Cn)n∈N is a C streaming
circuit family for L (with feedback m and acceptor A).
In general, (Cn)n∈N need not have a finite description,
but all families constructed in this paper will have one.

Streaming vs random access. Over regular languages,
random-access recognizability and streaming recogniz-
ability coincide for reasonable classes of circuits. The
following theorem provides efficient translation from cir-
cuits to streaming circuits, and vice versa. A class C
of circuits families is closed under shifts if for each cir-
cuit family (Cn)n∈N from C, each family obtained from
(Cn+1)n∈N by hard-wiring a chosen input gate is in C.

Theorem 1. Let C be a class of circuit families closed
under shifts and Boolean combinations. Then a regular
language L ⊆ Σ∗ has streaming-circuit complexity C if
and only if it is in C.

More precisely, if the recognizing family of circuits has
depth and size bounded by non-decreasing functions d(n)
and s(n), the resulting streaming circuit for block size
n has feedback k, depth d(n+ k + k2) +O(1), and size
k3 · s(n + k + k2) + O(k3), where k is the number of
states of the minimal deterministic automaton for L.

Proof. The left to right implication is almost imme-
diate. Let (Cn)n∈N be a C streaming circuit family for L
with feedback m and acceptor A. The family of circuits
recognizing L is(

A(Cn(10m−1, ·))
)
n∈N ;

that is, we hardwire the initial values in the feedback
gates of Cn, and feed the output of Cn to A. Since
circuit A is fixed, by the closure properties of C, the
resulting circuit family is indeed in C, and so is L.

The right to left implication is more complicated. Let
A be the minimal deterministic automaton for L and
(Cn)n∈N a C family of circuits recognizing L. Let p, q be
states of A. We shall construct a C family of circuits
recognizing the language

Lp,q = {w ∈ Σ∗
∣∣ δw(p) = q} ,

where δw(p) is the state to which the automaton moves
from state p after reading word w. Let u be the shortest
word that reaches p from the initial state; by pumping,
|up| ≤ k, where k is the number of states of A. By
minimality, for all distinct states q, q′ there is a word
v of size at most k2 such that δv(q) ∈ F if and only if
δv(q′) /∈ F . Consequently, Lp,q is a Boolean combination
of k − 1 residual languages of the form

u−1Lv−1 = {w | uwv ∈ L} ,

where |u| ≤ k and |v| ≤ k2. Each of these languages can
be recognized with a C family of circuits (C ′n)n∈N where
C ′n is obtained from Cn+|u|+|v| by hardwiring the first
|u| input gates to u and the last |v| input gates to v. An
appropriate Boolean combination of these circuits gives
circuits for Lp,q. Assuming that i-th state is coded as
0i−110k−i on the feedback gates and the first state is
initial, it is easy to obtain a C family of streaming circuits

for L from the circuits for languages Lp,q. We simply add
on top of these circuits an additional circuit of depthO(1)
and size O(k2) that computes the state after processing
the current block from the previous state passed in the
feedback. To verify the required size bound, observe
that in total we construct k2 circuits for languages Lp,q.
Every such circuit consists of k − 1 circuits for residual
languages, each of size at most s(n+ k + k2). Since k is
considered a constant, by the closure properties of C we
have that the obtained circuit family belongs to C.

One could easily make the feedback logarithmic in k
by encoding the state in binary. However, this would not
improve the parameters of the circuit, as they depend on
the number of states, not the size of their representation.

The fact that the circuit has access, thanks to its
non-uniformity, to additional numerical information,
sometimes allows to simplify drastically the ongoing
computation. For instance, the language (a1a2 · · · an)∗

requires an automaton with n+ 1 states, but assuming
block size n it can be recognized by a streaming circuit
with feedback 1, which corresponds to 2 states:

a

bc

q x1

ba c

x2

ba c

x3

ba c

· · ·

∧

This kind of behaviour is difficult to analyze, but always
beneficial in the construction of streaming circuits.

3. VALIDATION: A GENERAL BOUND
Following Segoufin and Vianu [28], we work with or-

dered unranked trees, node-labelled with letters from a
finite alphabet Σ. We denote by Trees(Σ) the set of all
such trees.

We model schemas as “previous sibling, last child” tree
automata. A nondeterministic tree automaton

A = (Σ, Q, q0, F, δ)

consists of a finite input alphabet Σ, a finite set of states
Q with an initial state q0, a set of accepting states F ⊆ Q,
and a transition relation

δ ⊆ Q×Q× Γ×Q .

Being in a node v of the input tree t ∈ Trees(Σ), the
automaton has processed tv, the subtree of t rooted at
v. The state q for node v depends on the label σ of v
and the states q1, q2 from the previous sibling and the
last child of v, respectively, in the way specified by the
transition relation:

(q1, q2, σ, q) ∈ δ

(in leftmost siblings and leaves we use the initial state q0
instead of q1 and q2, respectively). The tree t is accepted
by A if states can be chosen for nodes in such a way
that the root gets a state from F . We write L(A) for

the set of accepted trees. If L = L(A), we say that L is
regular, and that it is recognized by A.

A schema language that is simpler, but often sufficient
in practice, is offered by document type definitions, or
DTDs for short. A DTD

D = (Σ, r, P)

consists of a finite alphabet Σ with a distinguished root
label r ∈ Σ, and a function P that assigns to each
label a ∈ Σ a regular expression P (a) over Σ, called
the production for a, and written as a→ P (a). A tree
t ∈ Trees(Σ) conforms to D if its root is labelled with r
and for each label a ∈ Σ and each node v in t with label
a, the sequence of labels of v’s children forms a word
generated by the regular expression P (a).

A practically relevant class of nested-relational DTDs,
covering a large proportion of real life schemas [2], is
obtained by assuming non-recursiveness (that is, no a-
labelled node has an a-labelled descendant) and allowing
only productions of the form

a→ â1â2 . . . â` ,

where a1, a2, . . . a` are distinct elements of Σ, and âi is
equal to ai, ai? = (ε+ ai), a

∗
i , or a+

i = aia
∗
i .

In the context of streaming processing we need a string
representation of trees. Under the XML encoding trees
are represented as words over Σ ∪ Σ, the elements of Σ
and Σ being, respectively, the opening and closing tags,

flat
(a

t1
. . . tk

)
= a · flat(t1) · · · flat(tk) · a .

We call flat(t) the flattening of t, and

flat(L) =
{

flat(t)
∣∣ t ∈ L}

the flattening of L. Another natural possibility is the
term encoding, which is similar to the XML encoding
except that we only have one closing tag symbol #,

flat#

(a

t1
. . . tk

)
= a · flat#(t1) · · · flat#(tk) ·# .

Intuitively, the XML encoding corresponds to recogni-
tion by a visibly push-down automaton [20] (or input
driven automaton [11]). The term encoding requires only
one stack symbol, which corresponds visibly counter au-
tomata. In the sequel we work with the XML encoding
for concreteness, but for most of our results, the choice
of the encoding does not matter.

As observed by Segoufin and Vianu [28], the flattening
of a regular tree language is a regular word language if
and only if the tree language has bounded depth (there
exists a uniform bound on the depth of all trees in L).

Proposition 1 ([28]). For each regular tree lan-
guage L, the following conditions are equivalent:

• L has bounded depth;

• flat(L) is a regular word language.

Thus, to have any chance for streaming-circuit valida-
tion, we restrict our attention to bounded-depth trees.

From the practical point of view this is a mild assump-
tion, as real-life schemas tend to be bounded-depth [2].

Translation from bounded-depth tree automata to
deterministic word automata over encodings involves
only single-exponential blow-up.

Proposition 2. Let A be a tree automaton with k
states recognizing a bounded-depth language L ⊆ Trees(Σ).
One can construct a deterministic automaton with
O(|Σ|k · 2k2) states recognizing flat(L). (♠) 1

We finish this section with a general NC1-upper bound
for streaming circuit complexity of bounded-depth regu-
lar tree languages. Assuming the usual interpretation
of NC1 as the class of problems that can be solved effi-
ciently in parallel, this shows that streaming validation
parallelizes. The bound combines Theorem 1, Proposi-
tion 2 and a folklore fact that all regular languages are
in NC1 (i.e., random-access validation parallelizes).

Proposition 3. Each regular language L can be rec-
ognized by an NC1 streaming circuit family. More pre-
cisely, for block size n one can construct a recognizing
circuit with feedback k, depth O(log n), and size O(k3n),
where k is the number of states of the minimal deter-
ministic automaton for L.

Proof. The first part of the claim follows by Theo-
rem 1 from the fact that all regular languages are in NC1.
To achieve the claimed bounds, we adapt the standard
construction to obtain directly a streaming circuit.

Let A = (Σ, Q, q0, δ, F) be the minimal automaton
for L, and let |Q| = k. Any function f : Q→ Q can be
represented as a k × k binary matrix, which in turn can
be seen as a k2-bit word. From a single input letter σ one
can compute function δσ, represented as a k2-bit word,
using a circuit that has depth 1 and size O(k2); note that
this circuit hardwires the transition function of A. Given
two k × k matrices (as k2-bit words), one can compute
their product (over the Boolean algebra) with a circuit of
depth 2 and size O(k3). Finally, for an input word w of
length n = 2k one can compute the function δw by first
computing functions δwi

, and then composing them in
pairs to obtain functions for pairs of consecutive letters,
quadruples, octuples, etc. The resulting circuit Cn has
depth O(logn) and size O(k3n). If |w| is not a power
of two, take C2dlog ne and hardwire identity function in
place of the functions for last 2dlogne − |w| input letters;
this preserves the bounds. From the family (Cn)n∈N one
easily constructs a streaming circuit family for L: one
simply computes the value of the function computed by
Cn on the state represented (in unary) by the values
in the feedback gates. This can be done easily with a
circuit of depth 2 and size O(k2).

Propositions 2 and 3 immediately yield the following.

Theorem 2. For each regular bounded-depth language
L ⊆ Trees(Σ), flat(L) can be recognized by an NC1

streaming circuit family. More precisely, for block size

1The proofs of claims marked with (♠) are in the appendix

n, one can construct a recognizing streaming circuit

with feedback O(|Σ|k · 2k2), depth O(logn), and size

O(|Σ|3k · 23k2 · n), where k is the number of states of the
given nondeterministic automaton recognizing L.

As remarked in [28], if the input tree language is given
as a DTD with productions defined by nonambiguous
regular expressions, one can construct a finite automaton
recognizing either encoding, with the number of states
bounded by a polynomial of degree at most |Σ|. This
immediately improves the bound in the theorem above.

As we have seen in Theorem 1, for regular word lan-
guages streaming and random-access recognition with
circuits is the same for any reasonable class of circuits.
For flattenings of regular tree languages, this is not the
case. In the streaming model, the flattening must be
regular to be recognized by any circuit family; in the
random-access model, the flattening of each regular tree
language can be recognized by an NC1 circuit family [11].

4. VALIDATION IN CONSTANT DEPTH
In the last section we saw a generic construction trans-

lating a description of a tree language (an automaton
or a DTD) into a streaming circuit with relatively good
parameters: logarithmic depth, constant fan-in, and
polynomial size. However, this construction is largely
suboptimal as shown by the following example.

Example 1. Let L be given by the following DTD

r → a∗ ;

that is, L consists of trees of the form

r

a . . . a
.

Then, flat(L) = r(aa)∗r can be easily recognized by an
AC0 streaming circuit family (of linear size).

On the other hand, any regular language not in AC0

gives a depth-2 regular tree language whose flattening
is not recognizable by an AC0 streaming circuit family.

Example 2. From the parity lower bound [12] we
immediately get that for the tree language L given by

r → (ab∗a+ b)∗ ,

flat(L) cannot be recognized by an AC0 family of stream-
ing circuits.

Yet again, a simple modification can turn a hard tree
language into an easy one, by adding more structure.

Example 3. For the language L given by the DTD

r → (c+ b)∗ , c→ ab∗a ,

the flattening flat(L) given by

r
(
c(aa(bb)∗aa)c+ bb

)∗
r

is recognized by an AC0 family of streaming circuits. 2

2This can be verified using, for instance, an on-line tool
available at http://paperman.cadilhac.name/sage/.

As regular languages in AC0 have an exact logical
characterization, and membership in AC0 is decidable,
one could decide whether the flattening of a given regular
bounded-depth tree language can be recognized by an
AC0 family of circuits. To explain it in more detail,
we need to recall some classical results in descriptive
complexity. Then, we shall look at practical fragments
of the DTD formalism that guarantee the existence of
AC0 streaming circuit families.

First order logic and constant-depth circuits. We con-
sider first order logic over words, encoded as relational
structures over universe {0, . . . , n − 1} where n is the
length of the word. Formulas are generated by the first
order logic grammar with two kinds of atomic predicates:
the letter predicates of the form a(x) that are true if
and only if the position x in the word is labelled by a,
and numerical predicates which are predicates speaking
about the word stripped of labels. For conciseness, we
also allow numerical constants min and max for the first
and last positions in the word.

Example 4. The language

{anbn | n ∈ N}
is defined by the formula

max ≡ 1 mod 2 ∧ ∀y y < max

2
↔ a(y) .

It is well known that word languages definable in
FO with arbitrary numerical predicates are exactly lan-
guages in AC0 (see [14] for instance). The simplest
way to translate an FO sentence ϕ into a constant-
depth circuit is to introduce a gate for each subformula
ψ(x1, . . . , xk) and each choice of positions i1, . . . , ik in
the word. The most external logical symbol in ψ deter-
mines the type of the gate: ∨, ∧, ¬ correspond to OR,
AND or NOT gates, and quantifiers are interpreted as
disjunctions and conjunctions over all positions of the
word. The gate is connected to the gates correspond-
ing to appropriate subformulas of ψ(x1, . . . , xk) with
variables valuated accordingly. The gates for the letter
predicates are simply the binary input gates encoding
the input symbols. If P is a numeric predicate, the
gate for P (i1, . . . , ik) is either constantly 0 or constantly
1, depending on P and i1, . . . , ik (this is where we use
non-uniformity). The depth of this circuit is bounded by
the depth of the formula, seen as a term. The number of
gates is bounded by ‖ϕ‖ ·nk, where ‖ϕ‖ is the number of
different subformulas in ϕ and k is the maximal number
of free variables in a subformula.

This construction can be optimized for FOk, that is,
for formulas using (and reusing) only k variables (see
[19, 23]). Such a formula can be written in a normal
form in which quantification is always of the form

∃x1 δ(x1, . . . , xk) ∧ ψ2 ∧ · · · ∧ ψk
such that δ(x1, . . . , xk) is a quantifier-free formula using
only numerical predicates, and the set of free variables
of ψj does not contain xj . Then, it essentially suffices
to have gates for subformulas with at most k − 1 free

variables: for each valuation of variables x2, . . . , xk, we
have an OR gate connected to the ANDs of the gates for
ψj with the variable x1 valuated in all ways that make
δ(x1, . . . , xk) hold. The size of the resulting circuit is
bounded by ‖ϕ‖ · nk−1.

Regular languages and logic. The connection between
logic and regular languages is a field of research on its
own that takes its root into the celebrated results of
McNaughton and Papert [22] and Schützenberger [26],
who characterized regular languages of FO[<], that is
languages definable in first order logic with the linear or-
der over positions. By extending this result to a slightly
more complicated fragment, and by using the parity
lower bounds for AC0, Barrington et al. [1] proved that
regular languages in AC0 are exactly those definable in
FO[<,MOD]; that is, in first order logic with (strict)
order and the unary modulo predicates of the form x ≡ r
mod q for arbitrary r, q ∈ N. Furthermore, this class of
regular languages has decidable membership thanks to
its algebraic characterisation.

Thus, we get the following corollary from Theorem 1.

Corollary 1. For a given regular tree language one
can decide if its flattening can be recognized with an AC0

streaming circuit family; a recognizing streaming circuit
for a given block size can be constructed effectively.

Checking whether a regular word language is definable
in FO[<,MOD] is PSPACE-complete [8]. The algorithm
to construct a circuit from an automaton runs in time
linear in the size of the syntactic monoid of the rec-
ognized language, and is therefore efficient as long as
the syntactic monoid is not too large. In general, the
syntactic monoid has size at most exponential in the size
of the minimal automaton recognizing the language.

A more practical approach to providing AC0 streaming
circuits is to define a subclass of DTDs that are directly
transformable into AC0 streaming circuit families. In
order to identify such a subclass, we first show that
for bounded-depth tree languages, definability in FO is
equivalent to FO[<]-definability of the flattening.

FO-definable tree languages. First order logic over trees
uses the letter predicates a(x) and navigational predi-
cates child(x, y), descendant(x, y), nextSibling(x, y) and
followingSibling(x, y), which hold if and only if y is re-
spectively a child, descendant, the next sibling or a
following sibling of x.

Example 5. The language of trees over unary alpha-
bet with only one branch is defined by the formulas

∀x, y descendant(x, y) ∨ descendant(y, x) .

Note that the flattening of this language is exactly the
one given in the previous example (with b = a).

We begin with a lemma which shows that, assuming
bounded depth, the tree structure can be recovered from
the flattening with FO[<] formulas. In the flattening,
we think of the positions with the opening tags as the
ones representing the nodes of the tree.

Lemma 1. For all d > 0, there exist FO[<] formulas

treed(x, y) , forestd(x, y)

expressing, respectively, that the segment from x to y is
the flattening of a tree of depth at most d, and the seg-
ment between x an y is a concatenation of the flattenings
of trees of depth at most d, as well as FO[<] formulas

childd(x, y), descd(x, y), nextd(x, y), followingd(x, y)

expressing (over flattenings of trees of depth at most d)
that the node represented by position x and the node rep-
resented by position y are in relation child, descendant,
next sibling, and following sibling, respectively.

Proof. The formulas treed and forestd are defined
by mutual recursion. Let tree0(x, y) = forestd = false.
For d > 0, the formula forestd(x, y) expresses that each
position between x and y a has a matching position
between x and y such that the corresponding segment
is the flattening of a tree of depth at most d,

forestd(x, y) := x < y ∧
∧ ∀u∈(x, y)∃v∈(x, y)

(
treed(u, v) ∨ treed(v, u)

)
,

and treed(x, y) checks that x and y are labelled by match-
ing tags and the segment between them is a concatena-
tion of the flattenings of trees of depth at most d− 1,

treed(x, y) :=
(∨
a∈Σ

a(x) ∧ a(y)
)
∧ forestd−1(x, y) .

It is not difficult to verify that treed and forestd indeed
define, respectively, flattenings of trees of depth at most
d and concatenations of such. We use treed to define
the descendant relation:

descd(x, y) := ∃x′ treed(x, x
′) ∧ y∈(x, x′) ∧

(∨
a∈Σ

a(y)
)
.

The child relation is then easy to define:

childd(x, y) := descd(x, y) ∧
∧ ¬∃z∈(x, y) descd(x, z) ∧ descd(z, y) .

Expressing the following sibling relation is straightfor-
ward once we have the child formula:

followingd(x, y) := x < y ∧
∧ ∃z childd(z, x) ∧ childd(z, y) .

Finally, the formula

nextd(x, y) := followingd(x, y) ∧
∧ ¬∃z∈(x, y) followingd(x, z)

defines the next sibling relation in the usual way.

From Lemma 1 and Theorem 1, we get the following
result.

Theorem 3. Let L be a bounded-bounded depth tree
language. Then, L is FO-definable if and only if flat(L)
is FO[<]-definable. In consequence, flattenings of FO-
definable tree languages are recognized by AC0 streaming
circuit families; the recognizing streaming circuit for a
given block size can be constructed effectively.

Proof. The formula defining the flattening of L is
obtained by taking the conjunction of treed(min,max)
and the formula defining L with each occurrence of child,
descendant, next-sibling, and following-sibling replaced
with the appropriate formula given by Lemma 1.

For the converse implication, note that we can rewrite
each FO[<]-formula over the flattenings so that quan-
tification is in one of the following forms:

∃xo
(∨
a∈Σ

a(xo)
)
∧ ϕ , ∃xc

(∨
a∈Σ

a(xc)
)
∧ ϕ ;

the resulting formula is at most exponentially larger.
Then, each variable has its type, opening or closing.
We now rewrite each atomic predicate for all possible
types of variables. For an opening variable xo, a(xo)
remains unchanged and a(xo) is rewritten as false; for
a closing variable xc, a(xc) is rewritten as false, and
a(xc) as a(xc). For a closing variable xc and an opening
variable yo, the atomic formula xc < yo is rewritten as
right(xc, yo), where right(x, y) is the formula

∃z∃z′ (descendant(z, x) ∨ z = x)∧
∧ followingSibling(z, z′)∧
∧ (descendant(z′, y) ∨ z′ = y) .

Similarly, the formulas

descendant(xo, yo) ∨ right(xo, yo) ,

descendant(xo, yc) ∨ right(xo, yc)∨
∨ descendant(yc, xo) ∨ xo = yc ,

right(xc, yc) ∨ descendant(yc, xc)

are used for the remaining three cases. We obtain a
formula of FO on trees, easily seen to be equivalent to
the original formula of FO[<] on flattenings.

Theorem 3 gives an effective sufficient condition for
the existence of an AC0 streaming circuit family for
the flattening: as FO[<] definability is decidable for
regular languages, so is FO-definability for bounded-
depth regular tree languages. We remark that for regular
tree languages of unbounded depth decidability of FO-
definability is a major open problem [5].

The condition given by Theorem 3 is not necessary.
As shown in the next example, capturing the entire
class of bounded-depth regular tree languages admitting
AC0 streaming circuit families for the flattenings would
require intricate artificial syntactic restrictions over the
basic formalism, with an unclear gain in expressivity.

Example 6. Consider the following two DTDs:

r → (aa)∗ , a→ (bb)∗ ; r → (aa)∗ , a→ (bbb)∗ .

The flattening of the language given by the left one is
AC0, whereas for the right one it is not.

The argument in Theorem 3 does not give good com-
plexity bounds: the FO formula for the flattening has
size linear in the original formula (and exponential in the
depth), but the automaton constructed from the formula,
needed to invoke Theorem 1, may have non-elementary

size. And even if there was a more efficient way to do
it, FO is not a natural schema definition language. A
desirable language should be a natural fragment of a
known schema definition language. We discuss such a
fragment in the following subsection.

We finish this subsection with a remark that without
the bounded-depth assumption one can recognize flat-
tenings of FO-definable tree languages in TC0 in the
random-access model. Recall that TC0 is defined like
AC0, but except that Majority gates can also be used.

Proposition 4. Let L be an FO-definable language
of trees. Then flat(L) is in TC0. (♠)

Even the flattening of the set of all trees is TC0-hard,
but not all flattenings of regular languages of unbounded
depth are: for instance the language of trees with only
one branch over unary alphabet is FO-definable and its
flattening is in AC0 (see Example 4).

A practical formalism for validation in constant-depth.
A natural formalism allowing validation with constant-
depth streaming circuits can be obtained by restricting
the productions in DTDs to FO[<]-definable languages.
Over words, being FO[<]-definable is equivalent to being
definable with a star-free regular expression [22]; that
is, an expression build from symbols from the alphabet
and the empty set by means of concatenation and all
Boolean operations, including complement.

Corollary 2. Each language L ⊆ Trees(Σ) defined
by a non-recursive DTD with star-free productions can
be defined in FO on trees, and so can be recognized by
an AC0 streaming circuit family.

Proof. For each a ∈ Σ there is an FO[<] sentence ϕa
defining the word language generated by the production
for a. As the DTD is non-recursive, all generated trees
have depth at most |Σ|. We define L with the formula

∃x r(x) ∧ ∀y ¬descendant(y, x) ∧ ∀z
∧
a∈Σ

a(z)→ ϕ̂a(z) ,

where r is the root label of the DTD, and the formula
ϕ̂a(z) is obtained from the sentence ϕa by replacing
each occurrence of the predicate < with the predicate
followingSibling and restricting all quantifiers to the
children of z; that is, ∃y ψ is replaced with ∃y child(z, y)∧
ψ and ∀y ψ is replaced with ∀y child(z, y)→ ψ (assuming
that variable z is not used in ϕa).

The popular class of nested-relational DTDs is a spe-
cial case, which admits constant-depth streaming circuits
with particularly good parameters.

Theorem 4. Each language L ⊆ Trees(Σ) defined by
a nested-relational DTD can be recognized by an AC0

streaming circuit family with feedback O(d · |Σ|), depth
O(d) and size O(d3 · |Σ|2 · n2) for block size n, where
d ≤ |Σ| is the maximal depth of trees in L.

Proof. We shall directly construct a streaming cir-
cuit, using FO formulas over separate blocks of the input

word as an intermediate formalism. Since the language is
defined by a nested-relational DTD, its depth is bounded
by some d ≤ |Σ|. Before we look at the DTD any further,
we construct a circuit that for each position x in the block
computes open(x) ∈ Σ≤d, the sequence of unmatched
opening tags in the prefix of the entire input word up to
(and including) position x. Note that open(x) is equal to
the sequence of labels on the path from the root to the
node corresponding to x in the encoded tree, including
this node if the tag of x is opening, and not including it
otherwise. As the feedback we shall use open(min−1),
where min−1 is the last position of the previous block.
We use the padding symbol $ (encoded as a sequence of
zeros) to fill up open(min−1) to d symbols.

First, we compute the values of the formula forestd(x, y)
from Lemma 1 for all positions within the block. Note
that forestd(x, y) has quantifier rank O(d) and uses only
3 variables. Its size is exponential if the recursive defini-
tion is unravelled, but it has only O(d+ |Σ|) different
subformulas. Thus, the standard translation for formu-
las with 3 variables gives a streaming circuit of depth
O(d) and size O

(
(d+ |Σ|) ·n2

)
; the circuit has n2 output

gates, one for each pair of values of x and y. From now
on, we shall treat forestd(x, y) as an atomic formula.

Similarly, we can assume the existence of atomic for-
mulas fp(x) for p = 1, 2, . . . , d expressing that position x
has the closing tag corresponding to the p-th letter stored
in the feedback. Their values for all x can be computed
with a circuit of depth O(1) and size O(d · |Σ| · n).

How does v = open(x) depend on u = open(min−1)?
The situation can be illustrated as follows:

a

c

a

a

a

a

c

a a c c a a cc a c c c

u
v

valid forest

We express this with formulas

ϕi,a(x)

for i = 1, 2, . . . , d, and a ∈ Σ, saying that the i-th
symbol of open(x) is a, assuming that the feedback
stores open(min−1). The formula is a disjunction over
0 ≤ j ≤ k, ` ≤ d with ` ≥ i of conditions saying that

• the first $ in the feedback is at position k + 1,

• there exist positions x ≥ y` > y`−1 > · · · > yj+1

with opening tags,

• there exist positions yj+1 > zj+1 > zj+2 > · · · > zk
with closing tags f j+1, f j+2, . . . , fk, such that

• all segments between these positions (including
min−1 and x) are flattenings of forests, and

• a = fi if i ≤ j, and a(yi) if i > j,

where fp is the symbol in the p-th feedback gate.

This resulting formula uses O(d) quantifiers and can
be written with 2 variables only. It has has O

(
d3
)

differ-

ent subformulas (with forestd(x, y) and fp(x) treated as
atomic formulas). Thus, the standard translation gives
a streaming circuit of depth O(d) and size O

(
d3 · n2

)
for block size n; the circuit has n output gates, one for
each value of x. Note that we cannot use the optimized
construction giving linear-size circuit, because the for-
mula forestd does not define a numerical predicate; that
is, it depends on the labels of positions.

The d·|Σ| circuits for formulas ϕi,a(x) compute open(x)
for all x. If for some x and i we have 0 for all a’s, it
means that open(x) has less then i symbols. Note that
the total size of the constructed circuits is O(d4 · |Σ| ·n2).

Local correctness of the encoding can be checked by
verifying that open(x) is nonempty throughout the com-
putation; as soon as it becomes empty, the remaining
positions in the block should store the padding symbol
$, and it should be the last block. All this can be tested
with a circuit of depth O(1) and size O(n2).

Once we have built the circuit computing open(x) for
each position x, we have access to the label of the parent
of each node whose closing tag is within the block: it
is the last letter of open(x). The labelling restrictions
enforced by the DTD can be expressed with the formula

∀x ∈ [min−1,max)∧
a∈Σ

(
a(x)→

∨
c∈N(a)

c(x+ 1)
)
∧

∧
∧
a,b∈Σ

(
open(x) ∈ Σ∗a$∗ ∧ b(x)→

∨
c∈N(a,b)

c(x+ 1)
)
.

where N(a) is the set of labels that can succeed the
opening tag a, and N(a, b) is the set of labels that can
succeed the closing tag b in the scope of tag a. Both
sets are determined by the production for a. Assume
the production is

a→ â1â2 . . . âk .

There are two cases, depending on whether there is i
such that âi is either a+

i or ai. If there is such an i, let
us take the minimal one. Then, N(a) = {a1, a2, . . . , ai}.
If there is no such i, N(a) = {a1, a2, . . . , ak} ∪ {a}. The
set N(a, aj) is characterised analogously: if there is i > j
such that âi is either a+

i or ai, for the minimal such
i we have N(a, aj) = {aj , aj+1, . . . , ai} for âj equal to
a∗j or a+

j , and N(a, aj) = {aj+1, . . . , ai} for âj equal

to aj? or aj . Similarly, if no such i exists, N(a, aj) is
either {aj , aj+1, . . . , ak} ∪ {a} or {aj+1, . . . , ak} ∪ {a},
depending on âj .

Note that to evaluate the formula we need access to
open(min−1) and the tag at position min−1. We have
already pointed out that open(min−1) is included in
the feedback; now we see that also the label at position
min−1 should be a part of the feedback. Assuming
unary encoding of letters, the size of the feedback is
O(|Σ|2). The standard translation of the formula gives a
circuit of depth O(1) and size O

(
(|Σ|2 +d · |Σ|) ·n

)
. The

output of the circuit is used to propagate the information

about the lack of error so far, which is done by means
of a designated error feedback gate.

Combining the two stages we obtain a circuit of depth
O(d) = O(|Σ|) and size O(d3 · |Σ|2 · n2).

Let us remark that the construction can be extended
to productions with thresholds a`..k, a≥k, at the cost
of including more information in the feedback: for each
label in open(y) we would need the number of its repe-
titions among its siblings so far (up to threshold k).

5. WIRE-LINEAR CIRCUITS
While having an AC0 streaming circuit family guaran-

tees depth independent of the block size, it is still possible
that the number of gates and the number of wires makes
implementation for larger block sizes unreasonable. We
now turn to wire-linear circuit families, WLAC0; that
is, bounded-depth circuit families in which the number
of wires (and thus the number of gates) grows linearly
with the size of the input (or block in case of streaming
circuits). As for AC0, WLAC0 has been studied and
regular languages in WLAC0 are characterized.

Regular languages in WLAC0. The logical characteri-
zation of regular languages in WLAC0 is given by the
following result, extending a similar characterization of
regular languages with a neutral letter in WLAC0 [17].

Theorem 5 ([23]). A regular language is in WLAC0

if and only if it is definable in FO2[+1, <,MOD].

Note that the signature includes the successor relation
+1, which cannot be defined from < with just 2 variables.

Unlike for AC0, both directions are involved. The
lower bound relies on an effective algebraic characteriza-
tion of languages definable in FO2[+1, <,MOD] from [9]
(which also makes definability decidable) and the fact
that the language (c + ac∗b)∗ is not in WLAC0 [17].
The upper bound, which we care mostly about, uses
a clever circuit construction for the prefix function [7].
For completeness, we sketch this construction and ex-
plain how to use it to construct a WLAC0 circuit family
from a formula of FO2[+1, <,MOD]. To get a WLAC0

streaming circuit family we use Theorem 1.
Consider the language Σ∗aΣ∗aΣ∗ of words with at

least two letters a. It can be defined by the formula

∃x a(x) ∧ ∃y y < x ∧ a(y)

The standard translation from FO, which introduces a
gate for each subformula with free variables valuated in
all possible ways, gives a circuit of quadratic size. The
optimized construction for FO2 formulas gives a circuit
which linearly many gates, but quadratically many wires:
for each value of x we have an OR gate connected to
the circuits for a(y) for all y < x.

To obtain a wire-linear circuit, we use prefix func-
tions. The prefix-OR is a function f : {0, 1}n → {0, 1}n
such that f(u)i =

∨
j≤i uj ; suffix-OR, prefix-AND, and

suffix-AND are defined similarly. A WLAC0 circuit for
prefix-OR is constructed by evaluating prefix-OR näıvely

(with quadratically many wires) over the ORs of size-
√
n

blocks, and then over each block separately with the
additional knowledge of the bit computed by the first
stage for the previous block. If we use a separate circuit
for each block, we get a circuit with O(n

√
n) wires. To

avoid this we note that we need to compute the prefix-
OR only for the single block where 0’s switch to 1’s in
the prefix-OR for block ORs. The remaining prefix and
suffix functions can be computed similarly. For more
details we refer to the original article [7].

Coming back to our example, a WLAC0 circuit for
Σ∗aΣ∗aΣ∗ can be obtained by computing the prefix-OR
of being letter a and checking if there exists an input
gate which contains a such that the prefix-OR for the
previous position evaluates to 1:

. . .

. . .

. . .

. . .

x1

a b

∧

y1

x1 x2

a b

x2 xi−1

a b

∧

yi−1

xi−1 xi

a b

xi xn−1

a b

∧

yn−1

xn−1 xn

a b

xn

prefix-OR

∨

This construction can be nested: for the language of
words having at least k occurrences of a, one uses k prefix-
OR circuits with n inputs interleaved with k layers of
AND gates of fan-in 2, with the last layer of AND gates
connected to a single OR gate. The size of the resulting
circuit is therefore O(kn) and is independent from the
size of the input alphabet.

To build a circuit for an arbitrary FO2 formula we
proceed by structural induction over formulas in the clas-
sical normal form. The basic cases are unary predicates
a(x) and x ≡ r mod q, for which the näıve construction
gives wire-linear circuits. As WLAC0 is closed under
Boolean connectives, the only difficulty in the inductive
step is the quantification. In the normal form, the quan-
tification is always of the form ∃y δ(x, y) ∧ ϕ(y) where
δ(x, y) only uses predicates x < y and x = y + k for
k ∈ Z. We deal with it like in the example above, by
computing prefix functions for ϕ(1), . . . , ϕ(n) and then
for each x adding an OR gate wired appropriately to
the outputs of ϕ(1), . . . , ϕ(n) and the prefix functions;
details can be adapted from [17] or found in [23].

Tree languages and WLAC0 validation. Using the de-
scribed results on regular languages in WLAC0, and
Theorem 1, we obtain the following corollary.

Corollary 3. Given a regular bounded-depth tree
language L, one can decide if flat(L) can be recognized
with a WLAC0 streaming circuit family; a recognizing
streaming circuit for a given block size can be constructed
effectively.

XML flattenings of the sets of trees of depth 1 and
2 (over a singleton alphabet), that is, languages (ab)∗

and (a(ab)∗b)∗, are in WLAC0, but for depth 3 the
flattening is the language (a(a(ab)∗)∗b)∗, which is not
in WLAC0. Hence, unlike for full FO, the two-variable
fragment of FO over trees is not captured by WLAC0

(and thus by FO2 over words). In fact, it is not easy to
imagine a nontrivial schema formalism that guarantees
recognizability with a WLAC0 streaming circuit family.
We shall eventually propose such a formalism, but for
now we shift the perspective and ask: what if we change
the way trees are encoded as words?

We propose an encoding giving even more information
than the XML encoding: the path-from-the-root encod-
ing. Trees of depth d over alphabet Σ are encoded as
words over alphabet

Σ ∪ Σ ∪
{

$
}
.

For 0 < i ≤ d, u ∈ Σi−1, a tree t with root a ∈ Σ, and
children that are trees t1, . . . , tk we set

∆d
u(t) = ua$d−i ·∆d

ua(t1) · · ·∆d
ua(tk) · ua$d−i

and let the path-from-the-root encoding of tree t be

∆d(t) = ∆d
ε(t) .

For this new encoding, we still have that the flattening

∆d(L) =
{

∆d(t)
∣∣ t ∈ L}

of a regular bounded-depth tree language L is a regular
language of words. Moreover, the correctness of the
encoding can be checked by a WLAC0 streaming circuit
family. For the remaining, we will simply denote by
∆(L) the encoding of L, assuming that the parameter d
is clear from the context.

Lemma 2. Let Treesd(Σ) be the set of trees over Σ of
depth at most d. The language ∆

(
Treesd(Σ)

)
is recog-

nized by a WLAC0 streaming circuit family with feedback
O(d · |Σ|), depth O(1), and O

(
|Σ| · (n+ d)

)
wires.

Proof. To encode consecutive tags in the flattening,
the path-from-the-root encoding uses blocks of d consec-
utive symbols: at most d symbols on the path to the
root, padded to length d with symbol $. These blocks
will be called d-slabs. For simplicity, in the following
we assume that n is divisible by d, so that d-slabs fit
exactly into blocks processed by the circuit. If this is
not the case, we can adapt the construction by passing
the previous incomplete block in the feedback, together
with the length r < d of the passed fragment, encoded
in unary. This increases the number of feedback gates
by O(d). All the congruences used in the following con-
structions can be easily adjusted to take in the account
the fact that the d-slabs in the block are shifted by r.

The feedback consists of the last d-slab of the pre-
viously processed block, and a special error gate that
passes the information whether an error has been encoun-
tered so far. In the first block, we assume that the initial
feedback encodes a d-slab consisting only of symbols $.
As such d-slabs will never appear again throughout the
computation, from this feedback we can recognize that
the first block is being processed. Henceforth we assume

that the circuit has the access to symbols at positions
between min−d and min−1, or to the information that
these positions do not exist.

Let us introduce an auxiliary formula last(x) express-
ing that x is the last position with a non-padding symbol
within its d-slab:

last(x) := ¬$(x) ∧
(
$(x+ 1) ∨ x ≡ d− 1 mod d

)
.

We can compute this formula for all positions x using
O(n) gates and depth O(1).

We proceed to verifying that the block’s description
is correct. For this, we check that certain conditions
hold for every position x ∈ [min−d,max−d) (resp.
x ∈ [0,max−d) during processing the first block) using
a formula, whose encoding as a circuit will be straightfor-
ward. We first express that the padding symbols behave
as expected:

x ≡ 0 mod d→ ¬$(x) ,

$(x) ∧ ¬$(x+ 1)→ x ≡ d− 1 mod d ,

$(x) ∧ ¬$(x+ d)→ last(x− 1) .

The first implication asserts that no d-slab contains the
$ symbol at its front. The second one asserts that after
any $ symbol, we necessarily have $ symbols up to the
end of the d-slab. The third one asserts that the only
$ symbol that can be replaced by a letter in the next
d-slab is the first one. Finally, we introduce the following
implications for all a ∈ Σ:

a(x)→ a(x+ d) ∨
(
a(x+ d) ∧ ¬last(x+ d)

)
,

a(x+ d)→ last(x+ d) ∧ a(x) .

The first implication asserts that an opening tag either
changes to the matching closing tag or remains the same
and another symbol is added after it. In particular, an
opening tag is never replaced by $. The second implica-
tion asserts that a closing tag has to be produced from
the last position of the previous d-slab. In particular, in
the next d-slab it can be replaced by an opening tag or
a $ symbol, but not by a closing tag. The described for-
mula can be turned directly into a wire-linear streaming
circuit with a single gate of unbounded fan-in, connected
to |Σ| · n subcircuits of size O(1) and constant fan-in.

The circuit described above verifies that the descrip-
tion of the block is correct. The error gate passed as the
feedback to the next iteration is its conjunction with the
error gate received in the feedback from the previous
iteration. The acceptor circuit just checks that no error
has occurred.

Even if some structural properties of the input trees
are accessible under the new encoding, WLAC0 circuits
still fail to capture FO2 definable tree languages, as
shown in the next example.

Example 7. Let L be the language given by the DTD

a→ b∗ , b→ (c+ d)∗

restricted to trees in which one of the root’s children
has only c-children. It is clearly definable in FO2. The

flattening ∆(L) is (up to relabelling) the language

(a(b(cc+ dd)∗b)∗a ∩ Σ∗b(cc)∗bΣ∗ ,

which is not in WLAC0.

This latter example works mainly because the language
is not defined by a DTD. Of course, it is hopeless to
believe that we can have a good streaming circuit for
any bounded-depth DTD, but what if we restrict the
productions to FO2[<]-definable languages? As it turns
out we can still get a tree language whose path-from-
the-root encoding is not recognizable with a WLAC0

streaming circuit family.

Example 8. For the language L given by the DTD

r → (a)∗ , a→ b∗c∗b∗ ,

the flattening ∆(L) is (up to relabelling) the language

r(a(bb)∗(cc)∗(bb)∗a)∗r ,

which is not in WLAC0.

What we can tackle are nested-relational DTDs.

Proposition 5. Let L be a tree language defined
by a nested-relational DTD. Then ∆(L) is definable
in FO2[<,+1,MOD] and is recognized by a WLAC0

streaming circuit family with feedback O(|Σ|2), depth
O(1), and O(|Σ|2 · n) wires for block size n.

Proof. It suffices to combine the construction from
Lemma 2, guaranteeing correctness of the encoding, with
the second stage of the construction in Theorem 4.

Unlike for Theorem 4, we cannot directly extend the
construction to DTDs with more general thresholds.

Example 9. For the language L defined by the DTD

r → a∗ , a→ bb , b→ c∗

the flattening ∆(L) is (up to relabelling) the language

r(ab(cc)∗bb(cc)∗ba)∗r ,

which is not in WLAC0.

Using a new encoding may seem to be an easy way out,
since we add exactly the information needed to validate
nested-relational DTDs with circuits having good param-
eters. However, it is possible to benefit from this solution
even without using the path-from-the-root encoding. If
we have control over the design of the schema, by ad-
justing the tags we can assume that each label uniquely
determines the label of the father. This does not seem
to restrict the practical scope of nested-relational DTDs,
and provides a nontrivial schema formalism guarantee-
ing WLAC0 streaming circuit families. If we cannot or
would not modify the schema nor change the encoding
into path-from-the-root, we can enrich the given encod-
ing before feeding it to the validating streaming circuit.
The enriching can be done by a fixed transducer (de-
pendent only on the alphabet, not the schema itself),

implemented with an AC0 streaming circuit family with
additional outputs. This should be viewed as a (rather
complicated) fixed device that could be optimized and
implemented in hardware once for all. Meanwhile, the
proper validation stage can be realised with a repro-
grammable hardware device of adapted size, that can
be readjusted as the schema changes.

A streaming circuit with output with input alphabet
Σ, output alphabet Γ, block size n, and feedback size
m is like a streaming circuit, except that it has two
kinds of output gates: immediate and pass-on. The
output word over a given input word is obtained by
concatenating the values on the immediate output gates
for subsequent blocks of the input word; the values on
the pass-on output gates are sent to the feedback gates
when the next block is processed. The immediate output
gates encode letters from Γ in unary, just as the input
letters are encoded: i-th letter is encoded as 0i−110|Γ|−i.
The output value is returned only if the acceptor circuit
returns 1; if it returns 0, the output is undefined.

Proposition 6. Let Σ be a finite alphabet and let
d ∈ N. For trees over Σ of depth at most d, one can
compute the path-from-the-root flattening from the XML
flattening with a streaming circuit with output that has
feedback O(d · |Σ|), depth O(d), and size O

(
d4 · |Σ| · n2

)
for block size n.

Proof. The first stage of the construction in the
proof of Theorem 4 gives almost the circuit we need: it
remains to append ā to open(x) for positions x labelled
with ā; this does not influence the bounds.

6. CONCLUSIONS
We have introduced streaming circuits, which model

parallel processing of streamed data in a way compat-
ible with the schema validation task. We have shown
that general results on the circuit complexity of regu-
lar languages can be used directly to reason about the
existence of good streaming circuits for bounded-depth
regular tree languages, giving effective but inefficient
criteria. For a restricted, but practically crucial, class
of languages defined by nested-relational DTDs we have
provided a direct construction of circuits with excel-
lent parameters: compositions of a quadratic-size AC0

circuits dependent only on the depth of trees and the
alphabet, and wire-linear AC0 circuits dependent on
the DTD. This construction can be extended easily to
schemas with more general thresholds. Extending it
further would be very relevant practically.

We have seen how to get a constant-depth polynomial-
size streaming circuit from a bounded-depth tree lan-
guage definable in first order logic. This relies on the
fact that FO-definability of word languages is decidable
and effective. There is a certain trade-off between the
depth of the circuits and the degree of the polynomial
bounding their size. We have seen that all FO-definable
languages have quadratic circuits, but achieving this
requires increasing the depth. It is even possible to
achieve near-linear upper bound for these languages by
increasing the depth sufficiently (see [18]). However, one

may want to optimise the depth at the cost of increasing
the degree of the polynomial. This question is related to
the famous dot-depth conjecture, which is equivalent to
deciding levels of the alternation hierarchy of first-order
logic. Indeed, if a language belongs to the k-th level
of this hierarchy then it is a finite Boolean combina-
tion of regular languages recognized by depth-k circuits.
Straubing conjectures that the languages in k-th level of
the hierarchy (enriched with the modulo predicates) are
exactly the Boolean combinations of regular languages
recognized by depth-k circuits [29].

Another related problem is the question of the circuit
complexity of word encodings of regular tree languages
(of unbounded depth). While there are TC0-complete
and NC1-complete examples, no good characterizations
are known. We conjecture that each regular tree lan-
guage is either NC1-complete or in TC0. It would be
very interesting to have an effective characterisation of
NC1-complete regular tree languages such that languages
that do not satisfy it are in TC0. Such a characterization
exists in the classical setting of word languages and relies
on an algebraic decomposition of finite automata [29].
Since such a decomposition for tree automata is un-
known and related to the open question of deciding
FO-definability of regular tree languages [5], we believe
this question might be very hard.

Checking correctness of the encoding has a huge im-
pact on validation. A way to isolate it is to consider
weak validation, where the input is assumed to be a
correct encoding of a tree. While no tree language of
unbounded depth can be validated in constant memory,
some can be weakly validated [27, 28]. For instance, for
the set of trees whose each a node’s leftmost child has
label b, we only need to check that each opening a tag
is followed by an opening b tag. However, it remains an
open question to decide whether a given language can be
weakly validated in constant memory. When restricted
to bounded-depth tree languages, this question can be
seen as a special case of the separation question for reg-
ular word languages, which has rich bibliography of its
own. For instance, separation of regular word languages
by FO[<]-definable languages is decidable [13, 24], and
similarly for FO2[+1, <] [25]. One can use these results
as a black box to find good streaming circuits for the
weak validation. Unfortunately, the separation abstrac-
tion is too powerful for tree languages of unbounded
depth: a yet unpublished result by Kopczyński shows
that separation of regular tree languages with regular
word languages is undecidable under both XML and
term encoding [16]. In contrast, the weak validation
problem under term encoding is decidable [6], and still
open under XML encoding.

7. REFERENCES
[1] David A. Mix Barrington, Kevin Compton,

Howard Straubing, and Denis Thérien. Regular
languages in NC1. J. Computer and System
Sciences, 44(3):478–499, 1992.

[2] G. J. Bex, F. Neven, and J. Van den Bussche.
DTDs versus XML Schema: a practical study. In
WEBDB 2004, pages 79–84, 2004.

[3] David Black-Schaffer. Block-Parallel Programming
for Real-Time Applications on Multi-Core
Processors. PhD thesis, Humboldt-Universität zu
Berlin, 2008. Available at
http://cva.stanford.edu/people/davidbbs/
black-schaffer_thesis_final.pdf.

[4] David Black-Schaffer and William J. Dally.
Block-parallel programming for real-time
embedded applications. In ICPP 2010, pages
297–306. IEEE Computer Society, 2010.

[5] Miko laj Bojańczyk, Howard Straubing, and Igor
Walukiewicz. Wreath products of forest algebras,
with applications to tree logics. Logical Methods in
Computer Science, 8(3), 2012.

[6] Vince Bárány, Christof Löding, and Olivier Serre.
Regularity problems for visibly pushdown
languages. In Bruno Durand and Wolfgang
Thomas, editors, STACS 2006, volume 3884 of
Lecture Notes in Computer Science, pages 420–431.
Springer Berlin Heidelberg, 2006.

[7] Ashok K. Chandra, Steven Fortune, and Richard J.
Lipton. Lower bounds for constant depth circuits
for prefix problems. In Josep Dı́az, editor, ICALP
1983, volume 154 of Lecture Notes in Computer
Science, pages 109–117. Springer, 1983.

[8] Sang Cho and Dung T. Huynh. Finite-automaton
aperiodicity is pspace-complete. Theoretical
Computer Science, 88(1):99 – 116, 1991.

[9] Luc Dartois and Charles Paperman. Alternation
hierarchies of first order logic with regular
predicates. In Adrian Kosowski and Igor
Walukiewicz, editors, FCT 2015, volume 9210 of
Lecture Notes in Computer Science, pages 160–172.
Springer, 2015.

[10] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott
Shenker. Adaptive stream processing using
dynamic batch sizing. In Ed Lazowska, Doug Terry,
Remzi H. Arpaci-Dusseau, and Johannes Gehrke,
editors, SoCC 2014, pages 16:1–16:13. ACM, 2014.

[11] Patrick Dymond. Input-driven Languages Are in
Log N Depth. Inf. Process. Lett., 26(5):247–250,
January 1988.

[12] Merrick Furst, James B. Saxe, and Michael Sipser.
Parity, circuits, and the polynomial-time hierarchy.
Theory of Computing Systems, 17:13–27, 1984.

[13] Karsten Henckell. Pointlike sets: the finest
aperiodic cover of a finite semigroup. Journal of
Pure and Applied Algebra, 55(1):85 – 126, 1988.

[14] Neil Immerman. Languages that capture
complexity classes. SIAM J. Computing,
16(4):760–778, 1987.

[15] Rashid Khogali, Olivia Das, and Kaamran
Raahemifar. Mobile parallel computing algorithms
for single-buffered, speed-scalable processors. In
TrustCom 2013 / ISPA-13 / IUCC-2013, pages
1832–1839. IEEE Computer Society, 2013.

[16] Eryk Kopczyński. Invisible pushdown languages.
CoRR, abs/1511.00289, 2015.

[17] Michal Koucký, Pavel Pudlák, and Denis Thérien.
Bounded-depth circuits: separating wires from
gates. In Harold N. Gabow and Ronald Fagin,
editors, STOC 2005, pages 257–265. ACM, 2005.

[18] Michal Koucký. Circuit complexity of regular
languages. Theory of Computing Systems,
45(4):865–879, 2009.

[19] Michal Koucký, Clemens Lautemann, Sebastian
Poloczek, and Denis Thérien. Circuit Lower
Bounds via Ehrenfeucht-Fraissé Games. In CCC
2006, pages 190–201, 2006.

[20] Viraj Kumar, P. Madhusudan, and Mahesh
Viswanathan. Visibly pushdown automata for
streaming XML. In WWW 2007, pages 1053–1062.
ACM, 2007.

[21] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi,
Yon Dohn Chung, and Bongki Moon. Parallel data
processing with mapreduce: a survey. SIGMOD
Record, 40(4):11–20, 2011.

[22] Robert McNaughton and Seymour Papert.
Counter-Free Automata. The MIT Press,
Cambridge, Mass., 1971.

[23] Charles Paperman. Circuits booléens, prédicats
modulaires et langages réguliers. PhD dissertation,
Université Paris Diderot, 2014. In French.

[24] Thomas Place and Marc Zeitoun. Separating
regular languages with first-order logic. In
Thomas A. Henzinger and Dale Miller, editors,
CSL-LICS 2014, pages 75:1–75:10. ACM, 2014.

[25] Thomas Place and Marc Zeitoun. Separation and
the Successor Relation. In Ernst W. Mayr and
Nicolas Ollinger, editors, STACS 2015, volume 30
of Leibniz International Proceedings in Informatics
(LIPIcs), pages 662–675, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[26] Marcel-Paul Schützenberger. On finite monoids
having only trivial subgroups. Information and
Control, 8(2):190–194, 1965.

[27] Luc Segoufin and Cristina Sirangelo.
Constant-memory validation of streaming XML
documents against dtds. In Thomas Schwentick
and Dan Suciu, editors, ICDT 2007, volume 4353
of Lecture Notes in Computer Science, pages
299–313. Springer, 2007.

[28] Luc Segoufin and Victor Vianu. Validating
streaming XML documents. In Lucian Popa, Serge
Abiteboul, and Phokion G. Kolaitis, editors,
PODS 2002, pages 53–64. ACM, 2002.

[29] Howard Straubing. Finite Automata, Formal Logic,
and Circuit Complexity. Birkhäuser, Boston, 1994.

http://cva.stanford.edu/people/davidbbs/black-schaffer_thesis_final.pdf
http://cva.stanford.edu/people/davidbbs/black-schaffer_thesis_final.pdf

APPENDIX
Below we include the proofs omitted in the main part
of the paper. For convenience we repeat the statements
of the propositions.

Proposition 2. Let A be a tree automaton with k
states recognizing a bounded-depth language L ⊆ Trees(Σ).
One can construct a deterministic automaton with

O(|Σ|k · 2k
2

)

states recognizing flat(L).

Proof. As L(A) has bounded depth, each accepting
run of A uses each state at most once on each branch
of the input tree. Indeed, if this was not the case, one
could construct an arbitrarily deep tree accepted by A
by repeating the part of the tree corresponding to the
segment of the branch between two occurrences of the
same state. Consequently, L(A) has depth at most k.

Let B = (Σ, Q, q0, δ, F) be a deterministic automaton
recognizing L obtained from A by the standard power-
set construction; we have |Q| = 2k. The automaton for
flat(L) simulates stack of depth at most k in its states.
Its state-space is

(Σ×Q)≤k ∪ {⊥,>} ,

where the empty sequence ε is the initial state and > is
the only final state. The transitions are given as follows:
upon reading symbol σ ∈ Σ in state α /∈ {⊥,>},
• if |α| < k, move to α (σ, q0),

• if |α| = k, move to ⊥;

upon reading symbol σ ∈ Σ in state α /∈ {⊥,>},
• if α = ε, move to ⊥,

• if α = (σ, q1) and δ(q0, q1, σ) ∈ F , move to >,

• if α = (σ, q1) and δ(q0, q1, σ) /∈ F , move to ⊥,

• if α = β (σ′, q′)(σ, q), move to β (σ′, δ(q′, q, σ)),

• if α = β (τ, q) with τ 6= σ, move to ⊥;

upon reading any symbol in state ⊥ or >, move to ⊥.

Proposition 4. Let L be an FO-definable language
of trees. Then flat(L) is in TC0.

Proof Sketch. We essentially repeat the proof of
Lemma 1 and Theorem 3, but this time using circuits
rather than formulas. In the course of the structural
induction, we need to deal with formulas with free vari-
ables. We work with words over the alphabet {0, 1}n ×
(Σ ∪ Σ) (for sufficiently large n). Over such words we
evaluate a formula ϕ(x1, x2, . . . , xn) by assuming that
xi is assigned the unique position that has 1 in the i-th
coordinate of its label.

It is sufficient to prove that the formula tree(xi, xj),
saying that the infix between position xi and position
xj is the flattening of a tree, is definable in TC0: to

conclude one simply notes that TC0 is closed under FO
quantification (and Boolean connectives), so all predi-
cates from Lemma 1, and all FO formulas using them,
can be defined in TC0 as well.

For every position y ∈ [xi, xj] which is labelled by an
opening tag, we find a position z ∈ [y + 1, xj] such that
z is labelled by the matching closing tag and the number
of open tags between y and z is exactly the number
of closing tags. This last operation can be done since
the Equality can be implemented as the AND of two
Majority gates: one that count the number of opening
tags compared to the closing one, and conversely the
other Majority gate count the closing tags compare to
the opening one.

	Introduction
	Streaming circuits
	Validation: a general bound
	Validation in constant depth
	Wire-linear circuits
	Conclusions
	References

