Monadic Second-Order Logic with Arbitrary
Monadic Predicates

NATHANAEL FIJALKOW, University of Warwick
CHARLES PAPERMAN, Institut Mathématiques de Jussieu, Paris rive gauche

We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary)
monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic, and
machine-independent characterizations. We consider the regularity question: Given a language in this class,
when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate.

We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds
for all fragments of MSO with monadic predicates and that the Crane Beach Conjecture holds for MSO with
monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula
with morphic predicates is regular.

CCS Concepts: « Theory of computation — Automata extensions; Logic and verification;
Additional Key Words and Phrases: Automata with advice, monadic predicates, morphic predicates

ACM Reference format:

Nathanaél Fijalkow and Charles Paperman. 2017. Monadic Second-Order Logic with Arbitrary Monadic Pred-
icates. ACM Trans. Comput. Logic 18, 3, Article 20 (August 2017), 17 pages.

https://doi.org/10.1145/3091124

1 INTRODUCTION

Monadic Second-Order Logic (MSO) over finite words equipped with the linear ordering on posi-
tions is a well-studied and understood logic. It provides a mathematical framework for applications
in many areas, such as program verification, database theory, and linguistics. In 1962, Biichi [5]
proved the decidability of the satisfiability problem for MSO formulae.

1.1 Uniform Monadic Predicates

In 1966, Elgot and Rabin [8] considered extensions of MSO with uniform monadic predicates. For
instance, the following formula,

Vx, a(x) & x is prime,

A preliminary version of this work appeared in MFCS’2014 [9]. This work was supported by The Alan Turing Institute
under the EPSRC grant EP/N510129/1, and by the French Agence Nationale de la Recherche, AGGREG project reference
ANR-14-CE25-0017-01.

Authors’ addresses: N. Fijalkow, The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB; email:
nfijalkow@turing.ac.uk; C. Paperman, Equipe de Logique Mathématique, Université Denis-Diderot Paris 7, UFR de Math-
ématiques - case 7012, site Chevaleret, 75205 Paris Cedex 13, France; email: charles.paperman@imj-prg.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1(212) 869-0481, or permissions@acm.org.

© 2017 ACM 1529-3785/2017/08-ART20 $15.00

https://doi.org/10.1145/3091124

ACM Transactions on Computational Logic, Vol. 18, No. 3, Article 20. Publication date: August 2017.

20


https://doi.org/10.1145/3091124
https://doi.org/10.1145/3091124

20:2 N. Fijalkow and C. Paperman

describes the set of finite words such that the letter a appears exactly in prime positions. The pred-
icate “x is a prime number” is a uniform numerical monadic predicate. Being numerical means that
its interpretation only depends on positions, that is, P = (P,),en, uniform means that it can be seen
as a relation over integers, that is, P C N*, and monadic means that it has arity 1, that is, k = 1.
Elgot and Rabin were interested in the following question: for a uniform numerical monadic pred-
icate P C N, is the satisfiability problem of MSO[<, P] decidable? A series of articles gave tighter
conditions on P, culminating to two final answers: in 1984, Semenov [24] gave a characterization
of the predicates P, such that MSO[<, P] is decidable, and in 2006, Rabinovich and Thomas [19,
22] proved this characterization to be equivalent to the predicate P being effectively profinitely
ultimately periodic. Further questions on uniform monadic predicates have been investigated. For
instance, Rabinovich [20] gave a solution to the Church synthesis problem for MSO[<, P], for a
large class of predicates P.

In this paper, we consider the so-called numerical monadic predicates and not only the uniform
ones: such a predicate P is given, for each length n € N, by a predicate over the first n positions
P, € {0,...,n— 1}. The set Arb; of these predicates contains the set Arb] of uniform monadic
predicates. Note that the subscript 1 in Arb; and Arb} corresponds to the arity. A formal definition
can be found in Section 2.1.

1.2 Advice Regular Languages

We call languages definable in MSO[ <, Arb,] advice regular. Note that no computability assump-
tions are made on the monadic predicates, so this class contains undecidable languages. Our first
contribution is to give equivalent presentations of this class, which is a Boolean algebra extending
the class of regular languages:

(1) It has an equivalent automaton model: automata with advice.

(2) It has an equivalent algebraic model: one-scan programs.

(3) Ithasamachine-independent characterization, based on generalizations of Myhill-Nerode
equivalence relations.

This extends the equivalence between automata with advice and Myhill-Nerode equivalence re-
lations proved in Reference [16] for the special case of uniform monadic predicates. We will rely
on those characterizations to obtain several properties of the advice regular languages. Our main
goal is the following regularity question:

Given an advice regular language L, when is L reqular?

To answer this question, we introduce two notions:

» The substitution property, which states that if a formula ¢ together with the predicate P
defines a regular language L, p, then there exists a regular predicate Q such that L, o = L, p.

* The syntactical predicate of a language L, which is the “simplest” predicate Py such that
L € MSO[<,P.].

Our second contribution is to show that the class of advice regular languages has the substitution
property, and that an advice regular language L is regular, if and only if Py is regular. We apply
these results to the case of morphic predicates [6] and obtain the following decidability result:
given a language defined by an MSO formula with morphic predicates, one can decide whether it
is regular.
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1.3 Motivations from Circuit Complexity

Extending logics with predicates also appears in the context of circuit complexity. Indeed, a de-
scriptive complexity theory initiated by Immermann [12] relates logics and circuits. For instance,
a language is recognized by a Boolean circuit of constant depth and unlimited fan-in, if and only
if it can be described by a first-order formula with any numerical predicates of any arity, that is,
AC° = FO[Arb].

This article led to the study of two properties, which characterize the regular languages (Straub-
ing Conjecture) and the languages with a neutral letter (Crane Beach Conjecture) in several frag-
ments and extensions of FO[Arb]. The Straubing Conjecture would, if true, give a deep understand-
ing of many complexity classes inside NC!. For instance, the Straubing Conjecture for first-order
logic with counting quantifiers is equivalent to the separation of ACC and NC!. In the case of
two-variable first-order logic, it implies tight bounds for the addition function. Many cases of this
conjecture are still open and are often equivalent to proving circuit lower bounds. The Crane Beach
Conjecture was introduced as a model-theoretic approach to prove lower bounds; however, this
conjecture has been disproved [3]. On the positive sides, both conjectures hold in the special case
of monadic predicates [3, 26] for several fragments. Our third contribution is to give simple proofs
of both the Straubing and the Crane Beach Conjectures for monadic predicates, relying on our
previous characterizations and extending them to abstract fragments. Recently, Gehrke et al. [10]
studied first-order logic with monadic predicates, but restricted to one variable, and were able to
obtain equations characterizing the regular languages in this class.

1.4 Outline

Section 2 gives characterizations of advice regular languages, in automata-theoretic, algebraic, and
machine-independent terms. In Section 3, we study the regularity question and give two different
answers: one through the substitution property and the other through the existence of a syntactical
predicate. The last section, Section 4, provides applications of our results: easy proofs that the
Straubing and the Crane Beach Conjectures hold for monadic predicates and decidability of the
regularity problem for morphic regular languages.

2 ADVICE REGULAR LANGUAGES

In this section, we introduce the class of advice regular languages and give several
characterizations.

2.1 Predicates

A numerical predicate P of arity k is given by P = (P,),en, where P, € {0,...,n— 1}*. Since we
mostly deal with monadic numerical predicates, we often drop the word “monadic numerical”. In
this definition the predicates are non-uniform: for each length the predicate is different. A predicate
P if uniform if it is a relation over the natural numbers. More formally, if there exists Q € Nk
such that for every n, P, = QN {0,...,n— 1}k. In this case, we identify P and Q, and see uniform

predicates as subsets of N,

Example 2.1. The predicate first = ({0}),en, which is true only on the first position, is uniform;
we denote it by {0}. Similarly, the predicate last = ({n — 1}),en, Which is true only for the last
position, is not uniform.

In this article, we will often treat predicates as words, identifying P = (P,,), ey with P, € {0, 1}".
In this case, we can see P as a language over {0, 1}, which contains exactly one word for each
length. This simple idea is used throughout the article, where logical formulae and automata treat
predicates as words, allowing us to perform syntactical operations on them.
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We often define predicates P = (P,,),en with P, € A" for some finite alphabet A. This is not
formally a predicate, but this amounts to defining one predicate for each letter in A, and this
abuse of notation will prove very convenient. Similarly, any infinite word w € A“ can be seen as
a uniform predicate.

Example 2.2. The predicate first can be seen as the infinite word 10?, and the predicate last as
the language of finite words described by the regular expression 0*1.

2.2 Monadic Second-Order Logic
The formulae we consider are monadic second-order (MSO) formulae, obtained from the following
grammar:
¢ =al) lx<ylPX)loApl-plIx ¢|3X, ¢

Here x,y, z, . . . are first-order variables, which will be interpreted by positions in the word, and
X,Y,Z,...are monadic second-order variables, which will interpreted by sets of positions in the
word. We say that a is a letter symbol, < the ordering symbol, and P, Q, ... are the numerical
monadic predicate symbols, often referred to as predicate symbols. The notation

(P, ... PO xt, kP XY, LX)

means that in ¢, the predicate symbols are among P, ..., P’ the free first-order variables are
among x',...,x? and the free second-order variables are among X!,...,X9. A formula without
free variables is called a sentence. We use the notation P to abbreviate P!, . . ., P¢, and similarly for

all objects (variables, predicate symbols, predicates).

We now define the semantics. The letter symbols and the ordering symbol are always interpreted
in the same way, as expected. For the predicate symbols, the predicate symbol P is interpreted by a
predicate P. Note that P is a syntactic object, while P is a predicate used as the interpretation of P.
Consider a formula ¢(P, ¥, X), a finite word u of length n, predicates P interpreting the predicate
symbols from P, a valuation X of the free first-order variables and a valuation X of the free second-
order variables. We define u, P, X, X |= ¢ by induction as usual, with

u,ii,ilzP(y) if yeP,.

A sentence ¢(P) and a tuple of predicates P interpreting the predicate symbols from P define a
language
L(Pj: {ue A" | u,P = ¢}
Such a language is called advice regular, and the class of advice regular languages is denoted by
MSO[<, Arb,].

2.3 Automata with Advice

We introduce automata with advice. Unlike classical automata, they have access to two more pieces
of information about the word being read: its length and the current position. Both the transitions
and the final states can depend on those two pieces of information. For this reason, automata with
advice are (much) more expressive than classical automata, and recognize undecidable languages.
A non-deterministic automaton with advice is given by A = (Q, qo, §, F) where Q is a finite set of
states, qo € Q is the initial state, § € N XN X Q X A X Q is the transition relation and F € N x Q
is the set of final states. In the deterministic case, § is a function from N X N x Q X A into Q.

A run of A over a finite word u = ug - - - u,_1 € A" is a finite word p = qo - - - ¢, € Q" such that
foralli € {0,...,n— 1}, we have (i,n,q;, u;, qi+1) € 6. It is accepting if (n,q,) € F. One obtains a
uniform model by removing one piece of information in the transition function: the length of the
word. This automaton model is strictly weaker, and is (easily proved to be) equivalent to the one
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a b c

3n
qc
(2n -1, 3n) (3n -1, 3n)

n prime

b, c a, b, c

a, b, c

Fig. 1. The automaton for Example 2.3.

introduced in Reference [16], where the automata read at the same time the input word and a fixed
word called the advice. However, our definition will be better suited for some technical aspects:
for instance, the number of Myhill-Nerode equivalence classes exactly corresponds to the number
of states in a minimal deterministic automaton.

Example 2.3. The language {a"b"c" | nis a prime number} is recognized by a (deterministic)
automaton with advice. The automaton is represented in Figure 1. It has five states, q4, qp, gc, gF,
and L. The initial state is g,. The transition function is defined as follows:

6(i,3n,q4,a) = q, ifi<n-1,
6(n—1,3n,q4,a) = qp,

6(i,3n,qp,b) = qp ifn<i<2n-1,
d(2n—1,3n,qp,¢) = qc»

6(i,3n,q9c,¢) =q. if2n<i<3n-1,
d(3n—1,3n,qc,¢) = qr.

All other transitions lead to L, the sink rejecting state. The set of final states is F = {(3n, qF) |
n is a prime number}.

We mention another example, that appeared in the context of automatic structures. Reference
[17] shows that the structure (Q, +) is automatic with advice, which amounts to showing that the
language

xtyt#zlz=x+y}

where X denotes the factorial representation of the rational x, is advice regular. A very difficult
proof shows that this is not possible without advice [28].

2.4 One-scan Programs

Programs over monoids were introduced in the context of circuit complexity [1]: Barrington
showed that any language in NC! can be computed by a program of polynomial length over a
non-solvable group. We present a simplification adapted to monadic predicates, introduced in Ref-
erence [25] and developed in Reference [4]. We refer to Reference [26, Chapter IX.4] for a complete
presentation. In these works, Barrington and Straubing use Ramsey-theoretic methods to obtain
non-expressibility results. In the remainder of this article, we will show a generalization of these
results, using a syntactic approach. In particular, we avoid the use of Ramsey type arguments.

A one-scan program is given by P = (M, (fi.n : A = M) nen, S), where M is a finite monoid and
S C M. The function f; , is used to compute the effect of the ith letter of an input word of length
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n. We say that the program P accepts the word u = ug - - - u,—q if

ﬁ),n(uo) o 'fn—l,n(un71) eSs.

Note that this echoes the classical definition of recognition by monoids, where a morphism
f:A— M into a finite monoid M recognizes the word u = ug - u,—1 if f(ug) - f(un-1) €S.
Here, a one-scan program uses different functions f; ,, depending on the position i and the length
of the word n.

Example 2.4. Let U; be the monoid over {0, 1} equipped with the classical multiplication. Con-
sider the alphabet A = {a, b}. We define the one-scan program (Uy, (fi.n)inen, {1}) as follows. If
n is not a prime number, then f; , is constant equal to 0. Otherwise, f; ,(a) = 0 and f; ,(b) = 1.
Therefore, a word is accepted by this one-scan program, if and only if its length is prime and all
prime positions are labelled by the letter b.

2.5 Myhill-Nerode Equivalence Relations

Let L € A" and p € N, we define two equivalence relations:

e u~povifforallwe A", wehaveuw € L < vw € L,
cu~ryp v if for all w € AP, we have uw € L & vw € L.

The relation ~; is called the (classical) Myhill-Nerode equivalence relation, and the second is a
coarser relation, which we call the p-Myhill-Nerode equivalence relation. Recall that ~; contains
finitely many equivalence classes, if and only if L is regular, that is, L € MSO[<].

2.6 Equivalence

We state several characterizations of advice regular languages.

THEOREM 2.5 (ADVICE REGULAR LANGUAGES). Let L be a language of finite words. The following
properties are equivalent:

(1) L € MSO[<, Arby],

(2) L is recognized by a non-deterministic automaton with advice,

(3) L is recognized by a deterministic automaton with advice,

(4) There exists K € N such that for all i,p € N, the restriction of ~p,, to words of length i con-
tains at most K equivalence classes,

(5) L is recognized by a one-scan program.

In this case, we say that L is advice regular.

This extends the Myhill-Nerode theorem proposed in Reference [16], which proves the equiva-
lence between properties (3) and (5) for the special case of uniform predicates.

Proor. The implication 2 = 3 is proved by determinizing automata with advice, extending the
classical powerset construction. Let A = (Q, qo, J, F) be a non-deterministic automaton with ad-
vice. We construct the deterministic automaton with advice A’ = (Q’, {qo}, &', F’), where Q’ is the
powerset of Q, the set of final states is F’ = {(n,S) | dq € S, (n,q) € F}, and the transition function
¢’ is defined by

&'(i,n,S,a) ={q¢' € Q| 3q €S, (i,n,q,a,q") € 5}.
It is easy to see that A and A’ are equivalent.

The implication 3 = 2 is immediate from the definitions. The implication 1 = 2 requires us to
show closure properties of automata with advice under union, projection, and complementation.
The first two closures are obtained in the exact same way as in the classical case, we do not detail
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x(X)
AVx, first(x) = x € Xy
X, JAVx, Yy, y=x+1A /\(q,a)eQxA \/q’EQ
T¢%9 (x) Ax € Xgnalx) ANy e Xy
AVx, last(x) = Vgep x € Xg AFi(x).

Fig. 2. Formula checking for the existence of an accepting run.

them here; for the third case, we rely on the equivalence between 3 and 4 and complement deter-
ministic (complete) automata with advice by simply exchanging F and its complement in N X Q.
The implication 2 = 1 amounts to writing a formula checking for the existence of a run. Let
= (Q. 90, 6, F) be a non-deterministic automaton with advice recognizing a language L.
Let X be a Q-tuple of monadic second-order variables. We first need to express that X partitions
the set of all positions of the word. This is easily expressed by the following formula, denoted

x(X):

Vx, \/xqu A \/ x €Xy— /\ x & Xy

qeQ qeQ q'#q€Q

For each g € Q, we define the predicates T#%9 by TZ® 7 ={ieN|6(i,n,q,a) =q'} and F? by
F1={neN| (n,q) € F}.

The MSO formula ¢ in Figure 2 checks for the existence of an accepting run and uses the pred-
icate symbols T% % 7 and F9. We have L, (ra.eq pay = L.

For the implication 3 = 4, let A be a determlmstic automaton with advice. Let n = i + p, and
consider the mapping t; , : A* — Q defined for u = ug - - - u;—_; by

ti,n(u) = 5(1 - 17 n, 5(1 - 2, n,:-- 5(05 n, qu u()) Tt ui—2)5 ui—l)'

In other words, t; , (u) is the state reached by A while reading u of length i assuming that the total
word will be of length n. We argue that t; ,,(u) = t; ,(v) implies u ~; , v: indeed, for w € AP, after
reading u or v, the automaton A is in the same state, so it will either accept both uw and vw or
reject both. Note that t; ,, can have at most |Q| different values. Consequently, the restriction of
~L,p to words of length i contains at most |Q| equivalence classes.

We now prove the implication 4 = 3, by constructing a deterministic automaton with advice.
Its set of states is Q = {0, ..., K — 1}. To each word v and length n > 0, we associate [u], € Q such
that if u and v both have length i, then u ~; ,,—; v, if and only if [u], = [v],. We set |¢],, = 0 for
all n; the initial state is 0. The transition function is defined by &(i, n, Lu],, a) = |ual,, for some u
of length i. (This is well defined: if both u and v have length i and |u], = [v],, thenu ~1 ,—; v, so
ua ~r, n-i—1 va, thus [ual, = |val,.) The set of final states is

F=A{(n,lu)o) |u € A" NL}.
We argue that this automaton recognizes L: whenever it reads u = ug - - - 1, the corresponding
run is
p = Lelnluolnluourln - - - Lo - - - tn-1]n,

which is accepting, if and only if u € L.
The implication 3 = 5 is syntactical. Consider a deterministic automaton with advice A =
(Q, 90,9, F) recognizing a language L. We define M to be the monoid of functions from Q to Q,
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20:8 N. Fijalkow and C. Paperman

with composition as multiplication. Define

f' ) A-—-> M
" \aes (g 6(iin, g, a)),

and S = {¢ € M | ¢(qo) € F}. The one-scan program (M, (fi,n)i,nen,S) recognizes L.

The converse implication 5 = 3 is also syntactical.

Consider a one-scan program (M, (fi.n)inen, S) recognizing a language L. Define the determin-
istic automaton with advice A = (M, 1,6, F), where 1 is the neutral element of M, the transition
function ¢ is defined by §(i,n,m,a) = m - f; ,(a), and F = {(n,m) | m € S}. The automaton A rec-
ognizes the language L. O

3 THE REGULARITY QUESTION

In this section, we address the following question: given an advice regular language, when is it
regular? We answer this question in two different ways: first by showing a substitution property
and second by proving the existence of a syntactical predicate. Note that the regularity question
is not a decision problem, as advice regular languages are not finitely presentable, so we can only
provide non-effective characterizations of regular languages inside this class.

In the next section, we will show applications of these two notions: first by proving that the
Straubing property holds in this case, and second by proving the decidability of the regularity
problem for morphic regular languages.

3.1 A Substitution Property

In this subsection, we prove a substitution property for MSO[<, Arb; ] and for MSO[<, Arb}]. We
start by defining the class of (monadic) regular predicates.

The predicates {c} and last —c = ({n — 1 —c}),en for a given ¢ € N are called local predi-
cates. The predicates {x | x = r mod ¢} and last = r mod q for given g,r € N are called modular
predicates.

THEOREM 3.1 ([18, 26]). Let P = (P,)nen be a predicate. The following properties are equivalent:
(1) There exists a formula ¢(x) € MSO[<] over the one-letter alphabet {a} such thatP, = {x €
{0,7’1 - 1} | anax |: (P(x)}
(2) The predicate P is a boolean combination of local and modular predicates.
(3) The language P C A™ is regular.
In this case, we say that P is regular. We denote by Reg; the class of regular (monadic) predicates.
The following theorem states the substitution property for MSO[<, Arb4].

THEOREM 3.2. For all sentences (p(ﬁ) in MSO[<, Arb,] and predicates P € Arb; such that Ltpj is
regular, there exist Q € Reg; such thatL(p o=L,5

The main idea of the proof is that among all predicates Q such that L op=Loo there is a
minimal one with respect to a lexicographic ordering, which can be defined by an MSO formula.
The key technical point is given by the following lemma, which can be understood as a regular
choice function.

LEMMA 3.3 (REGULAR CHOICE LEMMA). Let M be a regular language such that for alln € N, there
exists a word w € M of length n. Then there exists a regular language M’ € M such that for alln € N,
there exists exactly one word w € M’ of length n.

ACM Transactions on Computational Logic, Vol. 18, No. 3, Article 20. Publication date: August 2017.



Monadic Second-Order Logic with Arbitrary Monadic Predicates 20:9

Proor. We equip the alphabet A with a total order, inducing the lexicographic ordering <
on A*.

Let i be an MSO formula defining M. The objective is to define an MSO formula ¥ such that w
satisfies ¥, if and only if w is minimal among the words of its length to satisfy i with respect to
<. The language defined by this formula satisfies the desired properties.

First, let X be a A-tuple of monadic second-order variables. We say that X € A" represents the
word v € A" if X partitions the set of all positions and for all i € {0,...,n—1},a € A, we have
v; = a, if and only if i € X,. The formula expressing that X partitions the set of all positions is
denoted by x(X) (see the proof of Theorem 2.5 for the definition of this formula).

We obtain a formula ¢(X) from by syntactically replacing in i/ each letter predicate a(x) by
x € X,. The following property holds: for all X € A*, if X represents the word v, then X |= ¢(X)
is equivalent to v |= .

Now, we define a formula 9()_() such that for all words w € A* and X € A*, if X represents a
word v, then w, X |= 9()_(), if and only if w < v. There are two cases: either w = v, or w < v, so the
formula 8(X) is a disjunction of two formulae, the first stating that X represents w:

Vx, /\ (x e X, = a®x)),
acA

and the second stating that w < v, where v is represented by X:

Hx,( \/ a(x)/\xEXb)/\(Vy, y<x—>(\/a(y)/\y€Xa)>.

a<beA acA

The MSO formula ¥ that selects the minimal word in M is given by
¥ A VX, (x(X) A (X)) - 0(X).
This concludes the proof. O
We now prove Theorem 3.2 relying on Lemma 3.3.

Proor. Consider ¢(P) a sentence and P predicates such that L P18 regular. We write L for L P
Let 6 be an MSO formula defining L.

Consider the language M = (X e ({0, 1}9)* | L(pi =L}.

We first argue that M is regular. ’

As in the proof of Lemma 3.3, we introduce Y a A-tuple of monadic second-order variables, used
to represent words in A*. We obtain a formula i/(Y) from @ by syntactically replacing in 6 each
letter predicate a(x) by x € X,. The following property holds: for all Y € A*, if Y represents the
word v, then Y |= ¢/(Y) is equivalent to v |= 6.

Consider the following formula in MSO[<] over the alphabet {0, 1}¢:

VY, x(¥) = (¢(X) = ¥(Y));

it describes the language M: the word X € ({0, 1})" satisfies this formula if for any word v € A"
represented by Y, v is in L, if and only if v, X |= ¢(X).

Now, we note that for all n € N, there exists a word in M of length n, namely P,.. Thus, Lemma 3.3
applies, so there exists M’ € M a regular language so for all n € N, there exists a unique word in
M’ of length n, which we denote by Q,. Thanks to Theorem 3.1, this yields a tuple of regular
predicates Q such that L,g=L,p O
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20:10 N. Fijalkow and C. Paperman

We proved the substitution property for MSO[<, Arb;]. We now prove that it also holds for
MSO[ <, Arb}]; note that this is not implied by the previous case. We first prove it over infinite
words and then transfer the result to finite words.

THEOREM 3.4. For all sentences ¢(P) in MSO[<, Arb}] and predicates Pe Arb} such that L,pis

w-regular, there exist regular predicates Q € Arb" such that L,s=L,5

Proor. Consider ¢(P) a sentence in MSO[<, Arb"] and P predicates such that L o.p is w-regular,
denote it L.
Consider the following language:

M= {X e ({0,1}5)° | L,x =L}

Relying on the same arguments as in the proof of Theorem 3.2, we show that M is w-regular. It is
also non-empty, since it contains P. It follows from Biichi’s Theorem that it contains an ultimately
periodic word Q. Seen as predicates, Q are regular monadic uniform predicates, and L op= Lo
which concludes the proof. O

The following theorem states the substitution property for MSO[<, Arb!].

THEOREM 3.5. For all sentences ¢(P) in MSO[<, Arb}] and predicates Pe Arb} such that L(p,? is

regular, there exist regular predicates Q € Arb! such that L,s=L,5

ProOF. We consider ¢(P) a sentence in MSO[ <, Arb"] and predicates P such that L, p is regular.
Let b be a fresh letter (not in A), we denote by A, the alphabet A U {b}. We explain how to transform
¢(P) into a formula @(P) in MSO[<, Arb}] over the alphabet Ay, satisfying: for all u in A* and
predicates 6 we have:

wQky = ubd’.QE]. (1)
@(P) is obtained from ¢(P) by guarding/\every first-order quantifiers: the subformula Jy, 6(y) is

turned into the subformula Jy, =b(y) A 6(y). Equation (1) is easily proved by induction. Consider
the formula /(P) defined by

p(P) A dy, (Vx =y, b(x) A Vx <y, =b(x))

and the predicates P; they define the language L,s- b® thanks to the Equation (1), so it is w-regular.

From Theorem 3.4, we get a tuple of regular predicates Q € Arb” such that L vo=L,p- be. It
follows that L 0P = L 00 which concludes the proof. O

We note that the substitution property does not hold over binary predicates. In fact, one can
show much worse: given M a deterministic Turing machine, one can construct a universal formula
¢ (P) (i.e., with only universal quantifiers) with binary predicates such that L(M § = a’,ifand only

if P represents the run of M. In other words, even if the language of the formula is rather simple,
it can use its predicates to perform arbitrarily complicated computations.

3.2 The Syntactical Predicate

In this subsection, we define the notion of syntactical predicate for an advice regular language.
The word “syntactical” here should be understood in the following sense: the syntactical predicate
Py of L is the most regular predicate that describes the language L. In particular, we will prove that
L is regular, if and only if Py, is regular.
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Fig. 3. The predicate Py (here Py _4) for L = (ab)* + (ba)*b

Let L be an advice regular language. We define the predicate Pr, = (Pr,,)nen. Thanks to The-
orem 2.5, there exists K € N such that for all i,p € N, the restriction of ~1 , to words of length
i contains at most K equivalence classes. Denote Q = {0,...,K -1} and 2= (Q XA — Q)W Q,
where Q X A — Q is the set of functions from Q X A to Q. We define P , € ™.

Let i,n € N. Among all words of length i, we denote by ui’", u;’", ... the lexicographically min-
imal representatives of the equivalence classes of ~1, ,_;, enumerated in the lexicographic order:

ui " <lex u;,n <lex ué,n <lex """ (2)
In other words, uq is minimal with respect to the lexicographic order <, among all words of
length i in its equivalence class for ~1_,_;. Thanks to Theorem 2.5, there are at most K such words
for each i,n € N.
We define Py, (i) (the ith letter of Py ,) by
Pr .(i)(q.a) =q" if ufl' <A~ on—ie 1uq Mofori<n-—1, (3)
Pra(n—1)(q) if ug™ € L. (4)
Intuitively, the predicate Py describes the transition function with respect to the equivalence
relations ~1, ,. We now give an example.

Example 3.6. Consider the language L = (ab)* + (ba)*b. We represent Py 4 in Figure 3. Each
circle represents an equivalence class with respect to ~ 4, inside words of a given length. For
instance, there are three equivalence classes for words of length 3: a3, aba and bab. Note that
these three words are the minimal representatives of their equivalence classes with respect to the
lexicographic order. For the last position (here 3), the equivalence class of (ab)? (which is actually
reduced to (ab)? itself) is darker, since it belongs to the language L.

We state the main property of the predicate Py.

THEOREM 3.7. Let L be an advice regular language. Then L is regular, if and only if Py is regular.
The proof is split in two lemmas, giving each direction. We start by the if direction.

LEMMA 3.8. Let L be an advice regular language. Then L € MSO[<,P_].

Proor. From the definition of Py, it is easy to see that the word u of length n belongs to L, if
and only if there exists X : {0,...,n} — Q, such that:

Vg €Q, X(0) =g & Prn(0)(0,u) =g
AYq, ¢ €QVi<n—-1, X(i+1)=q < X(@{i)=qgAPr.(i)(qui)=¢
AVq€Q, X(n) =q = Pra(n-1)(q).

This can be written down as an MSO formula with the predicate Py. O
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The if direction of Theorem 3.7 follows from Lemma 3.8, because if Py is regular, then L €
MSO[<,P;] = MSO[<], so L is regular.

For the only if direction, we prove a stronger statement that will be useful in Section 4.4. Infor-
mally, we prove that the syntactic predicate Py is the least predicate required to define in MSO the
language L.

LEMMA 3.9. Let L be an advice regular language defined with the predicates P. Then Py €
MSO[<, P].

PROOF. Assume that L is defined by an MSO formula @ with the predicates P. Then the
three Equations (2), (3), and (4) defining P; can be written down as an MSO formula with the
predicates P.

To this end, we represent words as monadic second-order variables as in the proof of Lemma 3.3.
A A-tuple X of monadic second-order variables represents the word v € A" if X partitions the set
of all positions up to position n, and for all i € {0,...,n — 1}, we have v; = aif, and only if, i € X,.

Denote by y(X,x) the MSO formula expressing that X partitions the set of all positions up to
position x. Similarly, denote by Z(X, x) the MSO formula expressing that X partitions the set of
all positions from the position x + 1.

The formulae for Equations (2) and (4) make use of the formulae x(X, x) and 6. We omit them
as they are easy to write down, and focus on Equation (3).

The first step is to construct a formula go()_( VY, w) such that if w has length n, X represents u,
and Y represents v both of length i, then w, XY, i qo()_(, Y, x), if and only if u ~f ,_; v. Define
(p()_( Y, x) as

VZ, E(Z,x) = (p(X,x,Z) = ¢(Y,x,Z)),
where the formula ¢(X, x, Z) is obtained from 6 by syntactically replacing in 8 each letter predicate
a(y) by (y < xAyeXy) V(y>xAyeZ,). _

The second step is to construct a finite number of formulae y, (X, x) for ¢ € Q such that if w has
length n and X represents u of length i, then w, X, i |= y¢(X, x), if and only if there are exactly ¢ — 1
words of length i that are (i) pairwise not equivalent with respect to ~r_,—;, (ii) not equivalent to
u with respect to ~p,,—;, and (iii) smaller than u with respect to the lexicographic order.

We can now put the pieces together and give a formula for Equation (3):

Vx, VX, VY, /\ x €X, A )(()_(, x)/\)((l_/, x) =
acA, q,q'€Q

Prgaq(z) & (yq()_(,x) Nyg (?, x)).
It follows that P; is definable in MSO[<,P]. O

4 APPLICATIONS

In this section, we show several consequences of Theorem 2.5 (characterization of the advice regu-
lar languages), Theorem 3.2 (a substitution property for advice regular languages), and Theorem 3.7
(a syntactical predicate for advice regular predicates).

The first two applications are about two conjectures, the Straubing and the Crane Beach Con-
jectures, introduced in the context of circuit complexity. We first explain the motivations for these
two conjectures, and show very simple proofs of both of them in the special case of monadic
predicates.

The third application shows that one can determine, given an MSO formula with morphic pred-
icates, whether it defines a regular language.
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4.1 A Descriptive Complexity for Circuit Complexity Classes

We first quickly define some circuit complexity classes. The most important here is AC?, the class
of languages defined by boolean circuits of bounded depth and polynomial size, and its subclass
LAC? where the circuits have linear size. From AC®, adding the modular gates gives rise to ACC.
Finally, the class of languages defined by boolean circuits of logarithmic depth, polynomial size
and fan-in 2 is denoted by NC!. Separating ACC from NC! remains a long-standing open problem.

One approach to better understand these classes is through descriptive complexity theory, giv-
ing a perfect correspondence between circuit complexity classes and logical formalisms. Unlike
what we did so far, the logical formalisms involved in this descriptive complexity theory use pred-
icates of any arity (we focused on predicates of arity one). A k-ary predicate P is given by (P, )nen,
where P,, C {0, ...,n— 1}*. We denote by Arb the class of all predicates, and by Reg the class of
regular predicates as defined in Reference [26].

We recall the notations for some of the classical classes of formulae: FO (first-order quantifiers),
FO + MOD (first-order and modular quantifiers: 3"9x, ¢(x) reads “the number of x satisfying ¢(x)
is equal to r mod q”), FO? (first-order with at most two variables), and 8% (at most k — 1 alter-
nations of 4 and V quantifiers).

THEOREM 4.1 ([2, 11, 12, 15]).

(1) AC® = FO[Arb],
(2) LAC® = FO?[Arb],
(3) ACC = (FO + MOD)[Arb].

Two conjectures have been formulated on the logical side, which aim at clarifying the relations
between different circuit complexity classes. They have been stated and studied in special cases,
we extrapolate them here to all fragments. We first need to give an abstract notion of (logical)
fragment. Several such notions can be found in the bibliography, with more or less strong syntactic
restrictions (see Reference [14]). In this article, we use a minimalist definition of fragment: we only
require to be allowed to substitute predicates within each formula. Remark that this property is
not restrictive and is satisfied by all classical fragments of MSO. We fix the universal signature,
containing infinitely many predicate symbols for each arity. Let F be a class of formulae over this
signature and % a class of predicates, describing the fragment F[#] by

F[P]:{L(pjl(peF/\ﬁeP}.

The first property, called the Straubing property, characterizes the regular languages (denoted
by REG) inside a larger fragment.

Definition 4.2 (Straubing Property). F[#] has the Straubing property if: all regular languages
definable in F[#] are also definable in F[P N Reg].
In symbols,
F[#] N REG = F[P N Reg].

This statement appears for the first time in Reference [2], where it is proved that FO[Arb] has
the Straubing property, relying on lower bounds for AC® and an algebraic characterization of
FO[Reg]. Following this result, Straubing conjectures in Reference [26] that (FO + MOD)[Arb]
and BX[Arb] have the Straubing property for k > 1. Recently, this conjecture has been extended
to FO?[Arb] (see Reference [15]). If true, then it would imply the separation of ACC from NC!,
and for the FO? case, tight lower bounds on the addition of two integers in binary.

We already mentioned that several fragments have the Straubing property, as for instance,
31[Arb], FO[<, Arb;], and (FO + MOD)[<, Arb,], as proved by Straubing and Barrington [4, 25]
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by using Ramsey arguments for one scan programs and algebraic characterizations of these frag-
ments. In this article, we give a simpler syntactical proof that all fragments F[<, Arb;] have the
Straubing property. The second property, called the Crane Beach property, characterizes the lan-
guages having a neutral letter and is derived from a conjecture proposed by Thérien for the special
case of first-order logic and finally disproved in the article [3].

Definition 4.3 (Neutral letter). A language L has a neutral letter e € A if for all words u, v, we
have uv € L, if and only if uev € L.

Definition 4.4 (Crane Beach Property). F[#] has the Crane Beach property if: all languages having
a neutral letter definable in F[#] are definable in F[<].

Unfortunately, as mentioned, the Crane Beach property does not hold in general.

THEOREM 4.5 ([3, 23]). There exists a non-regular language having a neutral letter definable in
FO[Arb].

A deeper understanding of the Crane Beach property specialized to first-order logic can be
found in [3]. In particular, it has been shown that FO[<, Arb] has the Crane Beach property. In
this article, we give a simple proof that MSO[<, Arb,] has the Crane Beach Property.

4.2 The Straubing Conjecture for Advice Regular Languages
THEOREM 4.6. All fragments F[<, Arby] have the Straubing property.

This is actually a straightforward corollary of Theorem 3.2.

Proor. Let ¢ € F such that L@ p with Pe Arb, is regular. Thanks to Theorem 3.2, there exist
Q € Reg, such that L,5=L,5 This concludes the proof. O

We state a corollary of Theorem 4.6.
COROLLARY 4.7. Forallk > 1, BX[<, Arb] has the Straubing property.

We conclude this subsection by remarking that the substitution property does not hold over
infinite words, even for monadic predicates. This follows from the simple observation that adding
the “bit-predicate” to first-order logic allows us to express all of monadic second-order logic. For-
mally, the bit-predicate B is defined by B(x, y) holds if the yth bit of the binary representation of x
is 1. Roughly speaking, in the setting of infinite words the bit-predicate can make use of the infi-
nite number of positions to talk about any finite set, hence first-order logic with the bit-predicate
expresses all of weak monadic second-order logic, which coincides with monadic second-order
logic.

Now the Straubing Property over infinite words for first-order logic reads

FO[Arb] N wREG = FO[Reyg].

This would imply MSO[<] € FO[Reg], which does not hold: the parity language, defined by L =
{u-8” | u € {a,b}" has an even number of a} belongs to MSO[<], but not to FO[Reg] [27].

4.3 The Crane Beach Conjecture for Advice Regular Languages

In this subsection, we show that the Crane Beach Conjecture holds for advice regular languages.
THEOREM 4.8. MSO[<, Arb,] has the Crane Beach property.

The proof'is a simple corollary of Theorem 2.5.
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Proor. Recall that a language over finite words L has a neutral letter e € A if for all words u
and v, we have uv € L if, and only if, uev € L. In other words, u ~, ue.

Let L be an advice regular language, thanks to Theorem 2.5, there exists K € N such that for all
i,p € N, the restriction of ~1, , to words of length i contains at most K equivalence classes.

We argue that ~;, contains at most K equivalence classes (without both restrictions to words
of a given length). Indeed, assume to the contrary that there are K + 1 words that are pairwise
non-equivalent with respect to ~. By iterating the equivalence u ~, ue, we obtain K + 1 words
of the same length (the maximal length of the K + 1 original words), which are still pairwise non-
equivalent with respect to ~1. For two non-equivalent words u, v, there exist a third word w wit-
nessing the non-equivalence: uw € L but vw ¢ L or the other way around. Again by padding with
the neutral letter e, we obtain non-equivalence witnesses for each pair of the K + 1 words of the
same length (the maximal length of the w witnesses). Hence, we have K + 1 words of the
same length that are not equivalent with respect to ~1, , for the same p, a contradiction. It follows
that L is regular, that is, L € MSO[<]. O

4.4 Morphic Regular Languages

In this subsection, we apply Theorem 3.7 to the case of morphic predicates, and obtain the fol-
lowing result: given an MSO formula with morphic predicates, it is decidable whether it defines a
regular language.

The class of morphic predicates was first introduced by Thue in the context of combinatorics on
words, giving rise to the HDOL systems. Formally, let A, B be two finite alphabets, o : A" — A" a
morphism, a € A aletter such that o(a) = a - u for some u € A* and ¢ : A* — B* a morphism. This
defines the sequence of words ¢(a), ¢(c(a)), p(c%(a)), ..., which converges to a finite or infinite
word. An infinite word obtained in this way is said to be morphic.

We see morphic words as predicates, and denote by HDOL the class of morphic predicates. We
call the languages definable in MSO[<, HDOL] morphic regular.

THEOREM 4.9. The following problem is decidable: given L a morphic regular language, is L regular?
Furthermore, if L is regular, then we can construct a finite automaton for L.

The proof of this theorem goes in two steps:

« first, we reduce the regularity problem for a morphic regular language L to deciding the
ultimate periodicity of Py,
* second, we show that Py is morphic.

Hence, we rely on the following result: given a morphic word, it is decidable whether it is ultimately
periodic. The decidability of this problem was conjectured 30 years ago and proved recently and
simultaneously by Durand and Mitrofanov [7, 13].

The first step is a direct application of Theorem 3.7. For the second step, observe that thanks to
Lemma 3.9, we have P;, € MSO[<, HDOL]. We conclude with the following lemma, which follows
from the characterization of morphic words as being those automatically presentable with the
lexicographic ordering [21].

LEMMA 4.10. HDOL is closed under MSO-interpretations, that is, if P is an infinite word such that
P € MSO[<,HDOL], then P € HDOL.

Furthermore, all constructions in this proof are effective, and if Py is ultimately periodic, then
one can compute the threshold and the period, and derive from them a finite automaton for L.

As a corollary, we also obtain from Theorem 4.9 the decidability of MSO[<, HDOL]. Indeed,
from a language in MSO[<, HDOL], we first determine whether it is regular, and: if it is regular,
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then determine whether it is empty by looking at the (effectively constructed) finite automaton
recognizing it, and if it is not regular, then it is non-empty (since the empty language is regular).
We stress, however, that this result can be obtained with a much more direct proof [6].
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