
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 4:1–4:31
https://lmcs.episciences.org/

Submitted Nov. 08, 2021
Published Oct. 18, 2023

LOCALITY AND CENTRALITY: THE VARIETY ZG

ANTOINE AMARILLI a AND CHARLES PAPERMAN b

aa LTCI, Télécom Paris, Institut polytechnique de Paris, France
e-mail address: antoine.amarilli@telecom-paris.fr

bb Univ. Lille, CNRS, INRIA, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
e-mail address: charles.paperman@univ-lille.fr

Abstract. We study the variety ZG of monoids where the elements that belong to a
group are central, i.e., commute with all other elements. We show that ZG is local, that is,
the semidirect product ZG ∗D of ZG by definite semigroups is equal to LZG, the variety
of semigroups where all local monoids are in ZG. Our main result is thus: ZG ∗D = LZG.
We prove this result using Straubing’s delay theorem, by considering paths in the category
of idempotents. In the process, we obtain the characterization ZG = MNil ∨Com, and
also characterize the ZG languages, i.e., the languages whose syntactic monoid is in ZG:
they are precisely the languages that are finite unions of disjoint shuffles of singleton
languages and regular commutative languages.

1. Introduction

In this paper, we study a variety of monoids called ZG. It is defined by requiring that the
elements of the monoid that belong to a group are central, i.e., commute with all other
elements of the monoid. The notation ZG thus stands for Zentral Group, inspired by the
classical notion of centrality in group theory. We can also define ZG with the equation
xω+1y = yxω+1 on all elements x and y, where ω is the idempotent power of the monoid.

The variety ZG has been introduced by Auinger [Aui00] as a subvariety of interest of
the broader and better-known class ZE of semigroups where the idempotent elements are
central. The study of ZE was initiated by Almeida and Azevedo [AA87]. Straubing studied
in particular the variety MNil (called simply V in [Str82]) of regular languages generated
by finite languages, and showed that it is exactly the variety of aperiodic monoids in ZE.
From this, a systematic investigation of the subclasses of ZE was started by Almeida and
pursued by Auinger: see [Alm96, page 211] and [Aui00, Aui02].

Our specific motivation to investigate ZG is our recently published study [AJP21] of the
dynamic membership problem for regular languages. In this problem, introduced in [SFMS97],
we study how to apply substitution update operations on an input word while maintaining
the information of whether it belongs to a fixed regular language. In [AJP21], we show
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that this can be performed in constant time per update for monoids in ZG, and extend
this to semigroups and languages. Further, ZG turns out to be a plausible boundary to
characterize constant-time complexity for monoids, semigroups, and languages. However,
the case of semigroups requires a study of the so-called semidirect product of ZG by definite
(D) semigroups, which we denote by ZG ∗D. Thus, some of our results on semigroups and
languages in [AJP21] require an deeper understanding of ZG and ZG ∗D, which is the
focus of this work.

The semidirect product operation on varieties used to define ZG ∗D intuitively corre-
sponds to composing finite automata via a kind of cascade operation. Its study is the subject
of a large portion of semigroup theory, inspired by the classical study of semidirect products in
group theory. There are also known results to understand the semidirect product specifically
by D. For instance, the Derived category theorem [Til87] studies it as a decisive step towards
proving the decidability of membership to an arbitrary semidirect product, i.e., deciding if a
given monoid belongs to the product. The product by D also arises naturally in several other
contexts: the dotdepth hierarchies [Str85], the circuit complexity of regular languages [Str94],
or the study of the successor relations in first-order logic [TW98, TW01, KL13].

Understanding this product with D is notoriously complicated. For instance, it requires
specific dedicated work for some varieties like J or Com [Kna83b, Kna83a, TW85]. Also,
this product does not preserve the decidability of membership, i.e., Auinger [Aui10] proved
that there are varieties V such that membership in V is decidable, but the analogous
problem for V ∗D is undecidable. For the specific case of the varieties ZG, ZE, or even
MNil, we are not aware of prior results describing their semidirect product with D.

Locality. Existing work has nevertheless identified some cases where the ∗D operator can be
simplified to a much nicer local operator, that preserves the decidability of membership and
is easier to understand. For any semigroup S, the local monoids of S are the subsemigroups
of S of the form eSe with e an idempotent element of S. For a variety V, we say that a
semigroup belongs to LV if all its local monoids are in V. It is not hard to notice that the
variety V ∗D is always a subvariety of LV, i.e., that every monoid in V ∗D must also be in
LV. In some cases, we can show a locality result stating that the other direction also holds,
so that V ∗D = LV. In those cases we say that the variety V is local. The locality of the
variety of monoids DA [Alm96] is a famous result that has deep implications in logic and
complexity [TW98, DP15, GMS17] and has inspired recent follow-up work [PS16]. Locality
results are also known for other varieties, for instance the variety of semi-lattice monoids
(monoids that are both idempotent and commutative) [McN74, BS73], any sub-varieties of
groups [Str85, Theorem 10.2], or the R-trivial variety [SJ73, Ste04, Str15]. Thus, a hope to
understand the variety ZG ∗D is to establish a locality result of this type for ZG.

Contributions. This paper shows the locality of the variety ZG. This is achieved by
showing a slightly stronger statement: each variety ZGp is local, where ZGp is the variety
of ZG monoids where each subgroup has a period dividing p:

Theorem 1.1. For every p > 0, we have LZGp = ZGp ∗D.

As ZG is the union of the ZGp, this easily implies:

Corollary 1.2. We have LZG = ZG ∗D.
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Further, the variety MNil of aperiodic monoids in ZE (introduced in [Str82] and
mentioned earlier) is exactly ZG1. Thus:

Corollary 1.3. We have LMNil = MNil ∗D.

In the process of proving Theorem 1.1, we obtain a characterization of ZGp-congruences,
i.e., congruences ∼ on Σ∗ where the quotient Σ∗/ ∼ is a monoid of ZGp. We show that they
are always refined by a so-called n, p-congruence, which identifies the number of occurrences
of the frequent letters (the ones occurring > n times in the word) modulo p, and also identifies
the exact subword formed by the rare letters (the ones occurring ≤ n times). Thanks to this
(Theorem 3.4), we also obtain a characterization of the languages of ZG, i.e., the languages
whose syntactic monoid is in ZG: they are exactly the finite unions of disjoint shuffles of
singleton languages and commutative languages (Corollary 3.5). We also characterize ZG
as a variety of monoids (Corollary 3.6): ZG = MNil ∨Com, for MNil defined in [Str82]
and Com the variety of commutative monoids.

Paper structure. We give preliminaries in Section 2 and formally define the variety ZG.
We then give in Section 3 our characterizations of ZG via n, p-congruences. We then define
in Section 4 the varieties ZG ∗D, LZG, ZGp ∗D, and LZGp used in Theorem 1.1 and
Corollary 1.2, which we prove in the rest of the paper. We first introduce the framework
of Straubing’s delay theorem used for our proof in Section 5, and rephrase our result as a
claim (Claim 5.7) on paths in the category of idempotents. We then study in Section 6 how
to pick a sufficiently large value of n as a choice of our n, p-congruence, show in Section 7
two lemmas on paths in the category of idempotents, and finish the proof in Section 8 by
two nested inductions. We conclude in Section 9.

2. Preliminaries

For a complete presentation of the basic concepts (automata, monoids, semigroups, groups,
etc.) the reader can refer to the book of Pin [Pin86] or to the more recent lecture notes [Pin19].
Except for the free monoid, all semigroups, groups, and monoids that we consider are finite.

Semigroups, monoids, varieties. A semigroup S is a set equipped with an internal
associative law (written multiplicatively). A monoid M is a semigroup with an identity
element 1, i.e., an element with 1x = x1 = x for all x ∈ M : note that the identity element
is necessarily unique. A variety of semigroups (resp., variety of monoids) is a class of
semigroups (resp., monoids) closed under direct product, quotient, and subsemigroup (resp.,
submonoid).

For a semigroup S, we call x ∈ S idempotent if x2 = x. We call the idempotent power
of x ∈ S the unique idempotent element which is a power of x. (This means that x is
idempotent iff it is its own idempotent power.) Now, the idempotent power of S is the least
integer ω > 0 such that for any element x ∈ S, the element xω is an idempotent power of x.
We write xω+k for any k ∈ Z to mean xω+k′ where k′ ∈ {0, . . . , ω − 1} is the remainder of
k in the integer division by ω. For example, xω−1 simply denotes x2ω−1, where we have
2ω − 1 > 0; in particular, as expected, we have xω−1x = xω.
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Languages and congruences. We denote by Σ an alphabet and by Σ∗ the set of all finite
words on Σ. A factor of a word is a contiguous subword of that word. For w ∈ Σ∗, we
denote by |w| the length of w. For u, v ∈ Σ∗, we say that u is a subword of v if, letting
n := |u|, there are 1 ≤ i1 < · · · < in ≤ |v| such that u = vi1 · · · vin . For w ∈ Σ∗ and a ∈ Σ,
we denote by |w|a the number of occurrences of a in w. A language L is a subset of Σ∗.

A congruence on a finite alphabet Σ is an equivalence relation on Σ∗ which satisfies
compositionality, i.e., it is compatible with the concatenation of words in the following
sense: for any words x, y, z, and t of Σ∗, if x ∼ y and z ∼ t, then xz ∼ yt. It is a finite
index congruence if it has a finite number of equivalence classes. For a given finite index
congruence ∼, the quotient Σ∗/∼ is a finite monoid, whose law corresponds to concatenation
over Σ∗ and whose identity element is the class of the empty word.

The syntactic congruence of a regular language L over an alphabet Σ is the congruence
on Σ where u, v ∈ Σ∗ are equivalent if for all s, t ∈ Σ∗, we have sut ∈ L iff svt ∈ L. As L is
regular, this congruence is a finite index congruence. The syntactic monoid of L over Σ∗ is
then the quotient of Σ∗ by the syntactic congruence for L. The syntactic semigroup of L is
the quotient of Σ+, the non-empty words over Σ, by the syntactic congruence.

A variety of regular languages is a class of regular languages which is closed under
Boolean operations, left and right derivatives (also called left and right quotients), and
inverse homomorphisms. By Eilenberg’s theorem [Eil76], a variety V of monoids defines a
variety of regular languages, namely, the languages whose syntactic monoid is in V. Following
standard practice, we abuse notation and identify varieties of monoids with varieties of
languages following this correspondence, i.e., we write V both for the variety of monoids
and the variety of languages.

Letting V be a variety of monoids, we say that a finite index congruence ∼ on Σ is a
V-congruence if the quotient Σ∗/∼ is a monoid in V. For a given V-congruence ∼, the map
η : Σ∗ → Σ∗/∼, defined by associating each word with its equivalence class, is a surjective
morphism to a monoid of V. Hence, each equivalence class is a language of V, since it is
recognized by Σ∗/∼.

The variety ZG. In this paper, we study the variety of monoids ZG defined (via Reiterman’s
theorem [Rei82]) by the equation: xω+1y = yxω+1. Intuitively, this says that the elements
of the form xω+1 are central, i.e., commute with all other elements. This clearly implies the
same for elements of the form xω+k for any k ∈ Z, as we will implicitly use throughout the
paper:

Claim 2.1. For any monoid M in ZG, for x, y ∈ M , and k ∈ Z, we have: xω+ky = yxω+k.

Proof. Recall that xω+k denotes xω+k′ where k′ ∈ {0, . . . , ω− 1} is the remainder of k in the

integer division by ω. Now, we can write xω+k′ as (xω+k′)ω+1, because the latter is equal to

x(ω+k′)×(ω+1) which is indeed equal to xω+k′ . Thus, by setting x′ := (xω+k′) and applying
the equation of ZG, we conclude.

Note that the elements of the form xω+1 are precisely the group elements, namely, the
elements of the monoid that are within a (possibly trivial) group that is a subsemigroup
of the monoid. In particular, the neutral elements of these groups are not necessarily the
neutral element of the monoid.

Claim 2.1 motivates the name ZG, which stands for “Zentral Group”: it follows the
traditional notation Z(·) for central subgroups, and extends the variety ZE introduced
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in [Alm94, p211] which only requires idempotents to be central. Thus, we have ZG ⊊ ZE,
and non-commutative groups are examples of monoids that are in ZE but not in ZG.

In addition to the class ZG, we will specifically study the subclasses ZGp for p > 0
defined by imposing the equation xω+p = xω in addition to the ZG equation. Intuitively,
ZGp is the variety of monoids (and associated regular languages) where group elements
commute and where the period of all group elements divides p, where the period of a group
element x is the smallest integer p′ such that xp

′
= x. Clearly, ZG =

⋃
p>0 ZGp. Further,

any finite language is in ZGp for any p > 0.
The period of a semigroup is the least common multiple of all periods of group elements.

Note that the period of a semigroup always divides ω, because the period of any group
element is equal to its idempotent power, hence divides ω. Further, the period of a monoid
in ZGp always divides p.

3. Characterizations of ZG

In this section, we present our characterizations of ZGp and of ZG, which we will use to
prove Theorem 1.1. We will show that ZGp is intimately linked to a congruence on words
called the n, p-congruence. Intuitively, two words are identified by this congruence if the
subwords of the rare letters (occurring less than n times) are the same, and the numbers of
occurrences of the frequent letters (occurring more than n times) are congruent modulo p.
This is the standard technique of stratification, used also, e.g., in [TW85, Example 0.1] or
in [Alm94, Section 10.8]. Formally:

Definition 3.1 (Rare and frequent letters, n, p-congruence). Fix an alphabet Σ and a word
w ∈ Σ∗. Given a integer n ∈ N called the threshold, we call a ∈ Σ rare in w if |w|a ≤ n, and
frequent in w if |w|a > n. The rare alphabet is the (possibly empty) set {a ∈ Σ | |w|a ≤ n}.
We define the rare subword w|≤n to be the subword of w obtained by keeping only the rare
letters of w.

For n > 0 and for any integer p > 0 called the period, the n, p-congruence ∼n,p is defined
by writing u ∼n,p v for u, v ∈ Σ∗ iff:

• The rare subwords are equal: u|≤n = v|≤n;
• The rare alphabets are the same: for all a ∈ Σ, we have |u|a > n iff |v|a > n;
• The number of letter occurrences modulo p are the same: for all a ∈ Σ, we have that |u|a
and |v|a are congruent modulo p. (Note that we already know this for rare letters using
the previous conditions.)

We first remark that two n, p-equivalent words are also m, q-equivalent for any divisor q
of p and any m ≤ n:

Claim 3.2. For any alphabet Σ, for any 0 < m ≤ n and p, q > 0 such that q divides p, the
n, p-congruence refines the m, q-congruence.

Intuitively, it is less precise to look for exact subwords up to a lower threshold and with
a modulo that divides the original modulo. Here is the formal proof:

Proof of Claim 3.2. We first assume that p = q. The claim is trivial for m = n, so we
assume n > m. As n > m, if two words u and v have the same rare alphabet for n, then
they have the same rare alphabet for m, because the number of occurrences of all rare
letters for n is the same, so the same ones are also rare for m. Furthermore, if u and v have
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the same rare subword for n, the restriction of this same rare subword to the rare letters
for m yields the same rare subword for m. Last, the number of occurrences of the frequent
letters modulo q is the same. Indeed, for the letters that were frequent for n, this is the case
because their number of occurrences is congruent modulo p = q. For the letters that were
not frequent for n, this is because their number of occurrences has to be the same because
the rare subwords for n were the same.

We now assume that q < p. Let us now assume that m = n. Then the n, p-congruence
refines the m, q-congruence because the rare alphabets and subwords must be equal (the
threshold is unchanged), and the counts of the frequent letters modulo p determine these
counts modulo q as q divides p.

To conclude in the general case, we know that the n, p-congruence refines the n, q-
congruence which refines the m, q-congruence, so we conclude by transitivity.

What is more, observe that n, p-congruences are a particular case of ZGp-congruences:

Claim 3.3. For any alphabet Σ and n > 0 and p > 0, the n, p-congruence over Σ∗ is a
ZGp-congruence.

Proof. Let E be an equivalence class of the n, p-congruence, which we see as a language
of Σ∗, and let us show that E is a language of ZGp. Intuitively, E defines a language
where the number of occurrences of each letter modulo p is fixed, where the set of letters
occurring ≤ n times (the rare letters) is fixed, and the subword that they achieve is also
fixed. Formally, let Σ = A⊔B the partition of Σ in rare and frequent letters for the class E,

let u be the word over A∗ associated to the class E, and let k⃗ be the |B|-tuple describing
the modulo values for E.

We know that the singleton language {u} is a language of ZGp, because it is finite.
Hence, the language U = B∗u1 · · ·B∗unB

∗ is also in ZGp, because it is the inverse of {u} by
the morphism that erases the letters of B and is the identity on A. Similarly, the language
C of words of B∗ where the number of occurrences of each letter modulo p are as prescribed

by k⃗ and where every letter occurs at least n times is a language of ZGp, because it is
commutative and p is a multiple of the period of every group element. For the same reason,
the language C ′ of words of Σ∗ whose restriction to B are in C is also a language of ZGp,
because it is the inverse image of C by the morphism that erases the letters of A and is the
identity on B. Now, we remark that E = C ′ ∩ U , so E is in ZGp, concluding the proof.

The goal of this section is to show the following result. Intuitively, it states that
ZGp-congruences are always refined by a sufficiently large n, p-congruence. Formally:

Theorem 3.4. For any p > 0, consider any ZGp-congruence ∼ over Σ∗ and consider
the quotient M := Σ∗/∼. Let n := (|M | + 1). Then the congruence ∼ is refined by
the n, p-congruence on Σ.

We first present some consequences of Theorem 3.4, and then prove Theorem 3.4.

3.1. Consequences of Theorem 3.4. The most important consequence of Theorem 3.4
is a characterization of the languages in ZG, which is similar to the one obtained by
Straubing in [Str82] for the variety MNil. To define MNil, first define the operation S1 on
a semigroup S: this is the monoid obtained from S by adding an identity element 1 to S if
S does not have one. Now, define a nilpotent semigroup S to be a semigroup satisfying the
equation xωy = yxω = xω. The variety MNil is generated by monoids of the form S1 for
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S a nilpotent semigroup. Note that MNil ⊆ ZG, because the equation of MNil implies
the equation of ZG. It was shown in [Str82] that the languages of MNil are generated
by disjoint monomials, that is, they are Boolean combinations of languages of the form
B∗a1B

∗a2 · · · akB∗ with B ∩ {a1, . . . , ak} = ∅.
Our analogous characterization for ZG is the following, obtained via Theorem 3.4:

Corollary 3.5. A language is in ZG if and only if it can be expressed as a finite union of
languages of the form B∗a1B

∗a2 · · · akB∗ ∩K where B ∩{a1, . . . , ak} = ∅ and K is a regular
commutative language.

Equivalently, we can say that every language of ZG is a finite union of disjoint shuffles
of a singleton language (containing only one word) and of a regular commutative language,
where the disjoint shuffle operator interleaves two languages (i.e., it describes the sets of
words that can be achieved as interleavings of one word in each language) while requiring
that the two languages are on disjoint alphabets. Intuitively, these characterizations are
because the syntactic congruence of a ZG language is a ZG-congruence, and Theorem 3.4
tells us that it is refined by an n, p-congruence, whose classes can be expressed as stated.
Let us formally prove Corollary 3.5 using Theorem 3.4:

Proof of Corollary 3.5. One direction is easy: if a language L is of the prescribed form, then
it is a Boolean combination of languages of MNil and regular commutative languages. These
languages are in ZG and ZG is closed under Boolean operations, so indeed L is in ZG.

For the converse direction, fix a language L in ZG, and consider the syntactic congruence
∼ of L: it is a ZG-congruence, more specifically a ZGp-congruence for some value p > 0.
By Theorem 3.4, there exists n ∈ N such that ∼ is refined by a n, p-congruence ∼′. Now,
by definition of the syntactic congruence, the set of words of Σ∗ that are in L is a union of
equivalence classes of ∼, hence of ∼′. This means that L can be expressed as the union of
the languages corresponding to these classes.

Now, an equivalence class of the n, p-congruence ∼′ can be expressed as the shuffle of
two languages: the singleton language containing the rare word defining the class, and the
language that imposes that all frequent letters are indeed frequent (so the rare alphabet is
as required) and that the modulo of their number of occurrences is as specified. The second
language is commutative, and the disjointness of rare and frequent letters guarantees that
the shuffle is indeed disjoint.

Thus, we have shown that L is a union of disjoint shuffles of a singleton language and a
regular commutative language. The form stated in the corollary is equivalent, i.e., it is the
shuffle of the singleton language {a1 · · · ak} and of the commutative language obtained by
restricting K to the subalphabet B.

Corollary 3.5 then implies a characterization of the variety of monoids ZG. To define
it, we use the join of two varieties V and W, denoted by V ∨W, which is the variety of
monoids generated by the monoids of V and those of W. Alternatively, the join is the least
variety containing both varieties. We then have:

Corollary 3.6. The variety ZG is generated by commutative monoids and monoids of the
form S1 with S a nilpotent semigroup. In other words, we have: ZG = MNil ∨Com.

Proof. Clearly ZG contains both Com and MNil. Furthermore, by Corollary 3.5, any
language in ZG is a union of intersections of a language in MNil and a language in Com.
Hence, it is in the variety generated by these two varieties of languages, concluding the
proof.
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On a different note, we will also use Theorem 3.4 to show a technical result that will be
useful later. It intuitively allows us to regroup and move arbitrary elements:

Corollary 3.7. For any monoid M in ZG, letting n ≥ |M |+ 1, for any element m of M
and elements m1, . . . ,mn of M , we have

m ·m1 ·m ·m2 ·m · · ·m ·mn ·m ·mn ·m = mn+1 ·m1 · · ·mn.

Proof. We consider the free monoid M∗. Let η : M∗ → M be the onto morphism defined
by η(m) := m for all m ∈ M . Let ∼ be the congruence that η induces over M∗, i.e., for
u, v ∈ M∗, we have u ∼ v if η(u) = η(v). Remark that, as M is in ZG, more specifically
in ZGp for some p > 0, the congruence ∼ is a ZGp-congruence by definition. Hence, by
Theorem 3.4, ∼ is refined by a n, p-congruence where n = |M |+ 1. Now, consider the two
words in the equation that we wish to show: they are words of M∗. As the letter m over
is then a frequent letter, we know that the two words are indeed n, p-congruent, which
concludes the proof.

3.2. Proof of Theorem 3.4. Having spelled out the consequences of Theorem 3.4, we
prove it in the rest of this section. It crucially relies on a general result about ZG that we
will use in several proofs, and which is shown by elementary equation manipulations:

Lemma 3.8. Let M be a monoid of ZG, let ω be the idempotent power, and let x, y ∈ M .
Then we have: (xy)ω = xωyω.

Proof. We show this claim by showing that two equalities establishing that each side of the
equation is equal to the same term, namely, xωyω(xy)ω. Let us first show the first equality:

(xy)ω = xωyω(xy)ω. (3.1)

To show Equation 3.1, remember that we have (xy)ω = xy(xy)ω−1 from the definition of
(xy)ω−1 in the preliminaries. Now, as (xy)ω−1 is central, the right-hand side is equal to
x(xy)ω−1y. By injecting an (xy)ω in the latter, we obtain:

(xy)ω = x(xy)ω−1(xy)ωy.

Applying this equality ω times gives:

(xy)ω = (x(xy)ω−1)ω(xy)ωyω.

Now, we can expand (x(xy)ω−1)ω, commuting the (xy)ω−1 to regroup the x into xω and
regroup the (xy)ω−1 into ((xy)ω−1)ω which is equal to (xy)ω, so that the first factor of the
right-hand side is equal to xω(xy)ω. By commuting, we obtain Equation 3.1.

The second equality is:
xωyω = xωyω(xy)ω. (3.2)

To show Equation 3.2, note that we have xωyω = xω−1xyω−1y, so by the equation of ZG we
get:

xωyω = xω−1yω−1xy.

Now, we have xω−1yω−1 = xω−1xωyω−1yω, and by the equation of ZG we have:

xω−1yω−1 = xω−1yω−1xωyω.

Inserting the second equality in the first, we have:

xωyω = xω−1yω−1xωyωxy.
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Now, applying this equality ω times gives xωyω = (xω−1yω−1)ωxωyω(xy)ω. As the first
factor of the right-hand side is equal to xωyω, we get xωyω = xωyω(xy)ω. This establishes
Equation 3.2.

From Equations 3.1 and 3.2, we immediately conclude the proof.

To continue with our proof of Theorem 3.4, thanks to Lemma 3.8, we can now show a
kind of “normal form” for ZG-congruences, by arguing that any word can be rewritten to
a word where frequent letters are moved to the beginning of the word, without breaking
equivalence for the ZG-congruence. This relies on Lemma 3.8 and allows us to get to the
notion of n-equivalence. Specifically:

Claim 3.9. Let ∼ be a ZG-congruence on Σ. Let n := (|M |+ 1) where M is the monoid
associated to ∼. Then, for all w ∈ Σ∗, for every letter a ∈ Σ which is frequent in w (i.e.,

|w|a > n), writing w′ the restriction of w to Σ \ {a}, and writing w′′ := a|w|aw′, we have:
w ∼ w′′.

Proof. Define n := |M |+ 1 as in the claim statement, and let µ : Σ∗ → M = Σ∗/∼ be the
morphism associated to ∼. Remark that by definition, for any words u, v, we have u ∼ v iff
µ(u) = µ(v).

Let us take an arbitrary w and a ∈ Σ such that a is frequent in w. We can therefore
write w = w1aw2a · · ·wmawm+1 with m = |w|a > n > |M |. Furthermore, letting xl =
µ(w1aw2a · · ·wla) for each 1 ≤ l ≤ m, as m > |M | we know by the pigeonhole principle that
there exist 1 ≤ i < j ≤ m such that xi = xj . Furthermore, we have xj = xizµ(a) where
z = µ(wi+1a · · ·wj). By applying the equation ω times, we have that xi = xi(zµ(a))

ω.
Now, by Lemma 3.8, we have (zµ(a))ω = zωµ(a)ω. This is equal to zωµ(a)ωµ(a)ω, and

by now applying Lemma 3.8 in reverse we conclude that (zµ(a))ω = (zµ(a))ωµ(a)ω. Finally,
we obtain xi = xi(zµ(a))

ω = xi(zµ(a))
ωµ(a)ω = xiµ(a)

ω.
Now, the equation of ZG ensures that µ(a)ω is central, so we can commute it in µ(w)

and absorb all occurrences of µ(a) in µ(w), then move it at the beginning, while keeping the
same µ-image. Formally, from xi = xiµ(a)

ω, we have

µ(w) = µ(w1)µ(a) · · ·µ(wi)µ(a)µ(a)
ωµ(wi+1)µ(a) · · ·µ(wm)µ(a)µ(wm+1),

and we commute µ(a)ω to merge it with all µ(a) and then commute the resulting µ(a)ω+|w|a

to obtain µ(a)ω+|w|aw′ with w′ as defined in the statement of the claim.
Now, remark that for any i > |M |, for any x in M , we have xω+i = xi. This is because,

letting k ≤ |M | be the idempotent power of x, we have xω = xk, hence xω+i = xk+i =
xi−kxkxk = xi−kxk = xi. Note that i − k > 0 because i > |M | and k ≤ |M |, so xi−k is
well-defined.

By applying this to x = µ(a) and i = |w|a > |M |, we deduce that µ(w) = µ(a)|w|aµ(w′).
This establishes that w ∼ w′′ and concludes the proof.

We can now conclude the proof of Theorem 3.4:

Proof of Theorem 3.4. Let ∼ be a ZGp-congruence on Σ∗, M its associated monoid, and fix
n := |M |+ 1 as in the theorem statement. Let u and v be two n, p-congruent words of Σ∗,
we need to prove that they are indeed ∼-equivalent. Let Σ′ = {a1, . . . , ar} be the subset of
letters in Σ that are frequent in u (hence in v, as they are n, p-congruent). By successive
applications of Claim 3.9 for every frequent letter in Σ′, starting with u, we know that

u ∼ a
|u|a1
1 · · · a|u|arr u|≤n. Likewise, we have v ∼ a

|v|a1
1 · · · a|v|arr v|≤n. Now, for any 1 ≤ i ≤ r,
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the values |u|ai and |v|ai are greater than n which is ≥ |M |, and they are congruent modulo p,

which is a multiple of the period of ai, so we have a
|u|ai
i ∼ a

|v|ai
i . We also know by definition

of the n, p-congruence that u|≤n = v|≤n. By compositionality of ∼, all of this establishes that
u ∼ v. Thus, the n, p-congruence indeed refines the ∼-congruence, concluding the proof.

4. Defining ZG ∗D and LZG, and Result Statement

We have given our characterizations of ZG and presented some preliminary results. We now
define LZGp and ZGp ∗D and show that they are equal (Theorem 1.1), and deduce the
same for LZG and ZG ∗D.

ZGp ∗ D and ZG ∗ D. We denote by D the variety of the definite semigroups, i.e., the
semigroups satisfying the equation yxω = xω. For p > 0, the variety of semigroups ZGp ∗D
is the variety generated by the semidirect products of monoids in ZGp and semigroups in D.
We recall for completeness the definition of the semidirect product operator, even though we
will not use it directly in this paper. Given two semigroups S and T , a semigroup action
of S on T is defined by a map act : S × T → T such that act(s1, act(s2, t)) = act(s1s2, t)
and act(s, t1t2) = act(s, t1)act(s, t2). We then define the product ◦act on the set T × S as
follows: for all s1, s2 in S and t1, t2 in T , we have: (t1, s1) ◦act (t2, s2) := (t1act(s1, t2), s1s2).
The set T × S equipped with the product ◦act is a semigroup called the semidirect product
of S by T , denoted T ◦act S. We then define ZG ∗D as the variety of semidirect products
of monoids in ZG and semigroups in D.

Remark that the ∗ operation is equivalent to the wreath product of varieties. We further
note for the expert reader that we could equivalently replace D by the variety LI of locally
trivial semigroups. We refer to [Str85] for a detailed presentation on this subject.

LZGp and LZG. Last, we introduce the varieties LZGp and LZG. For p > 0, the
variety LZGp is the variety of semigroups S such that, for every idempotent e of S, the
subsemigroup eSe of elements that can be written as ese for some s ∈ S is in ZGp. Note that
this subsemigroup is actually a monoid, called the local monoid of e, and that its identity
is e. The variety LZG is defined analogously but for ZG, and clearly LZG =

⋃
p>0 LZGp.

Remark that a semigroup is in LZG iff it satisfies the following equation: for any x, y and z
in S, we have:

(zωxzω)ω+1(zωyzω) = (zωyzω)(zωxzω)ω+1.

This incidentally shows by Reiterman’s theorem that LZG is indeed a variety of semigroups.

Main result. Our main result, stated in Theorem 1.1, is that, for any p > 0, the varieties
ZGp ∗D and LZGp are actually equal. In particular, for p = 1, we get that MNil ∗D =
LMNil.

Let us first remark that Theorem 1.1 implies Corollary 1.2 stated in the introduction,
namely, that LZG = ZG ∗D:

Proof of Corollary 1.2. Any semigroup in LZG is in LZGp for some p, hence in ZGp ∗D
by locality of ZGp ∗D, hence in ZG∗D. Conversely, by definition of ZG∗D being a variety,
each semigroup S of ZG∗D is obtained by applying the quotient, subsemigroup, and product
operators to semigroups S1, . . . , Sk for some k ∈ N, where each Si is a semidirect product
of a monoid in ZGpi for a certain pi > 0 and of a semigroup in D. Letting p :=

∏
1≤i≤k pi,
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all semigroups S1, . . . , Sk are then in ZGp ∗D, and applying the operators then witnesses
that S also belongs to ZGp ∗D. By locality of ZGp ∗D, we know that S belongs to LZGp,
hence to LZG.

Thus, fixing the value p > 0 for the rest of this paper, the only remaining task is to
prove Theorem 1.1 on LZGp and ZGp ∗D. Note that we can freely use all equational results
shown about monoids of ZG (e.g., Lemma 3.8), as they also hold for monoids in ZGp.

To prove Theorem 1.1, we will first present the general framework of Straubing’s delay
theorem in the next section and show the easy inclusion ZGp ∗D ⊆ LZGp, before moving
on with the rest of the proof.

5. Straubing’s Delay Theorem

To show our main result, we use Straubing’s delay theorem from [Str85]. We first give some
prerequisites to recall this result. To this end, let us first define a general notion of finite
category :

Definition 5.1. A finite category on a finite set of objects O defines, for every pair (o, o′) ∈ O
of objects, a finite set Co,o′ of arrows. An arrow in Co,o′ is said to be going from o to o′; we
call o the starting object and o′ the ending object.

The overall set of arrows
⋃

o,o′∈O Co,o′ is equipped with a composition law: for any

objects o, o′, o′′, for any arrows a ∈ Co,o′ and b ∈ Co′,o′′ , the composition law gives us ab
which must be an arrow of Co,o′′ . (Note that the objects o, o′, and o′′ are not necessarily
pairwise distinct.) Further, this composition law must be associative. What is more, we
require that for any object o, there exists an arrow in Co,o which is the identity for all
elements that it can be combined with (note that these arrows are in particular unique).

We now define the notion of category of idempotents of a semigroup:

Definition 5.2 (Category of idempotents). Let S be a semigroup. The category of idempo-
tents SE of S is the finite category defined as follows:

• The objects of S are the idempotents of S.
• For any idempotents e1 and e2 and any element x of S such that x ∈ e1Se2, we have
an arrow labeled by x going from e1 to e2, which we will denote by (e1, x, e2). Formally,
Ce1,e2 = {(e1, x, e2) | x ∈ e1Se2}.

The composition law of the category is (e1, x, e2)(e2, y, e3) = (e1, xy, e3). Note that it is
clearly associative thanks to the associativity of the composition law on S. The identity
element in Ce,e for an idempotent e is simply (e, e, e).

Let us now study SE in more detail. We denote by B := {(e1, x, e2) | x ∈ e1Se2} the set
of arrows of the category of idempotents.

A path of SE is a nonempty word of B∗ whose sequence of arrows is valid, i.e., the
ending object of each arrow except the last one is equal to the starting object of the next
arrow. Because SE is a category, each path is equivalent to an element of the category, i.e.,
composing the arrows of the path according to the composition law of the category will
give one arrow of the category, whose starting and ending objects will be the starting object
of the path (i.e., that of the first arrow) and the ending object of the path (i.e., of the last
arrow). Two paths are coterminal if they have the same starting and ending object. Two
paths π1 and π2 are SE-equal if they evaluate to the same category element, which we write
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π1 ≡ π2. Note that if two paths are SE-equal then they must be coterminal. A loop is a
path whose starting and ending objects are the same.

A congruence on B∗ is an equivalence relation ∼ over B∗ that satisfies compositionality
as previously defined. Note that the relation is also defined on words of B∗ that are not
valid, i.e., that do not correspond to paths; the compositionality requirement also applies to
such words.

Definition 5.3 (Compatible congruence). A congruence ∼ on B∗ is said to be compatible
with SE if for any two coterminal paths π1 and π2 of SE such that π1 ∼ π2, we have π1 ≡ π2.
In other words, ∼ is compatible with SE iff, on words of B∗ that are coterminal paths, it
refines SE-equality.

Recall the notion of a ZGp-congruence from Section 2. We are now ready to state
Straubing’s delay theorem, which was introduced in [Str85] and rephrased in [Til87]. The
theorem applies to any variety, but we state it specifically for ZGp for our purposes. The
theorem gives us an alternative characterization of ZGp ∗D:

Theorem 5.4 (Straubing’s delay theorem, Theorem 5.2 of [Str85]). A semigroup S is in
ZGp ∗ D iff, writing SE the category of idempotents of S and B its set of arrows, there
exists a ZGp-congruence on B∗ which is compatible with SE.

Using our notion of n, p-congruence, via Claim 3.3 and Theorem 3.4, we rephrase it
again:

Corollary 5.5. A semigroup S is in ZGp ∗D iff, writing SE and B as above, there exists
an n, p-congruence on B∗ which is compatible with SE.

Before moving on to the full proof of our main theorem (Theorem 1.1), we conclude
the section by noticing that the Straubing delay theorem implies the easy direction of our
result, namely, if L is in ZGp ∗D then L is in LZGp. This easy direction follows directly
from [Til87], but let us provide a self-contained argument:

Claim 5.6. We have ZGp ∗D ⊆ LZGp.

Proof. If S is in ZGp ∗D, then by Theorem 5.4, there exists a ZGp-congruence ∼ compatible
with SE. Let us now show that S is in LZGp by showing that, for any idempotent e, the
local monoid eSe is in ZGp. Let e be an idempotent. By definition of SE, the local monoid
eSe is isomorphic to the subset of arrows of SE going from e to e, with their composition law.
Let us denote this subset by Be. Define ∼e to be the specialization of the relation ∼ to Be.
Remark that M = B∗

e/∼e is a submonoid of B∗/∼, and is hence in ZGp because B∗/∼ is,
and ZGp is a variety. Remark that since all words in B∗

e are valid paths in SE, the local
monoid N := eSe defines a congruence ∼2 over B∗

e where two paths are equivalent if they
evaluate to the same monoid element. We know that ∼, hence ∼e, refines this congruence ∼2.
Hence, N is a quotient of M . Thus, eSe is a quotient of B∗

e/∼e, which is a submonoid of a
monoid in ZGp, concluding the proof.

In the rest of this paper, we show the much harder direction, i.e., if S is in LZGp then
S is in ZGp ∗D. To prove this, using Corollary 5.5, it suffices to show:

Claim 5.7. Let S be a semigroup of LZGp, write SE its category of idempotents and B
the set of arrows of SE. There exists an integer n > 0 such that the n, p-congruence on B∗

is compatible with SE.
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This result then implies, by our rephrasing of Straubing’s result (Corollary 5.5), that S is
in ZGp ∗D. So in the rest of this paper we prove Claim 5.7. The proof is structured in three
sections. First, in Section 6, we carefully choose the threshold n of the n, p-congruence to be
“large enough” so that we can enforce a gap between the number of occurrences of the rare
and frequent arrows according to the n, p-congruence, also ensuring a strong connectedness
property on the category of idempotents. Second, in Section 7, we show auxiliary results
about paths in the category of idempotents, using the ZG equation and the properties of
the threshold. Third, in Section 8, we conclude the proof, doing first an outer induction on
the total number of rare arrow occurrences, and then an inner induction on the number of
frequent arrows, using a so-called ear decomposition of the category.

6. Choosing the Threshold of the Congruence

In this section, we explain how to choose the threshold n to prove Claim 5.7. Our threshold
will enforce a large enough “gap” between the total number of occurrences of the rare letters
and the number of occurrences of the frequent letters. This is called a distant threshold and
will be useful in the rest of the argument.

This section is split into two subsections. In the first subsection, we formally define
the notion of a distant rare-frequent threshold, and show how such a threshold can be used
to find factors with no rare letters and a large number of copies of a frequent letter. We
further explain that we can indeed find a sufficiently distant rare-frequent threshold. This is
a generic result on words and alphabets that does not depend on ZG or on the category of
idempotents. In the second subsection, we instantiate this result for paths in the category of
idempotents, and explain how a distant rare-frequent threshold incidentally ensures a strong
connectedness property on the category. This last subsection focuses on the category of
idempotents, but is also generic in the sense that it does not use the ZG equation. Hence,
all of the present section applies to arbitrary semigroups.

6.1. Finding sufficiently distant thresholds. We now give our formal definition of a
distant rare-frequent threshold:

Definition 6.1. For Σ an alphabet, u ∈ Σ∗, and m > 0, we say that an integer n > 0 is
an m-distant rare-frequent threshold for u if, letting Σr := {a ∈ Σ | |u|a ≤ n} be the rare
alphabet of u for n, then the total number of occurrences of rare letters in u is less than a
proportion 1/m of the threshold n, minus one. Formally:

∑
a∈Σr

|u|a ≤ n
m − 1.

Note that if n > 0 is an m-distant rare-frequent threshold for u, then it is in particular
an m′-distant rare-frequent threshold for any 0 < m′ ≤ m.

If a word has a distant rare-frequent threshold, then any frequent letter can be found in
sufficiently many occurrences in some factor containing no rare letter. This will be useful in
pumping arguments, and is the motivation for the definition. Formally:

Lemma 6.2. For any alphabet Σ and m > 0, if a word u ∈ Σ∗ has an m-distant rare-frequent
threshold, then for any frequent letter a, the word u has a factor containing no rare letter
and containing at least m+ 1 occurrences of a.

Proof. As a is a frequent letter, by definition, its number |u|a of occurrences in u is such that
|u|a > n. Let r :=

∑
a∈Σr

|u|a be the total number of occurrences of the rare letters. The
definition of an m-distant rare-frequent threshold ensures that r ≤ n

m − 1. Thus, r + 1 ≤ n
m .
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Multiplying by m, we obtain (r + 1)m ≤ n. Thus, |u|a > (r + 1)m. As there are r rare
letters in total, there are r + 1 subwords between them containing no rare letter, so the
inequality implies that one of them contains > m occurrences of a, i.e., ≥ m+ 1 occurrences
of a. This concludes the proof.

We now intuitively state the existence, for any m > 0, of an m-distant rare-frequent
threshold that can be used for any word u. The precise claim is more complicated to phrase,
as we cannot pick one n which can serve as a m-distant rare-frequent threshold for any
word u. Indeed, for any choice of n, there will always be words u where the number of rare
letter occurrences happens to be close to n. However, we can pick a large enough n such
that, given any word u, we can pick some 0 < n′ ≤ n as an m-distant rare-frequent threshold
for u. We will state the claim more generally about picking a threshold for a pair of words
u1 and u2.

Here is the formal claim. We repeat that this result is a general claim about words,
which is not specific to ZG.

Lemma 6.3. For any alphabet Σ and m > 0, there exists an integer n > 0 ensuring the
following: for any words u1, u2 ∈ Σ∗, there exists an integer n′ with 0 < n′ ≤ n which is an
m-distant rare-frequent threshold for u1 and for u2.

Let us now prove Lemma 6.3 in the rest of this subsection. We first show an abstract
result capturing the essence of the underlying pigeonhole principle argument:

Claim 6.4. For any d > 0 and m′ > 0, there exists an integer n ≥ m′ ensuring the
following: for any d-tuple T of integers, there exists an integer n′ with m′ ≤ n′ ≤ n such
that

∑
i∈F Ti ≤ n′

m′ , where F = {i | Ti ≤ n′}.

Intuitively, the value m′ will be computed from m to ensure the “minus one” gap in
Definition 6.1, the “dimension” d will be the cardinality of the alphabet Σ (multiplied by 2
as we consider two words), the integer n is the threshold that we will choose, and n′ is the
value that we wish to obtain. Let us prove Claim 6.4:

Proof of Claim 6.4. Let us take n := (m′d)d+2, which ensures n ≥ m′. The candidate values
of n′ that we will consider are intuitively the following: m′d, (m′d)2, . . . , (m′d)d+2. Now take
any d-tuple T . For any 1 ≤ i ≤ d+2, let Ri = {i′ | Ti′ ≤ (m′d)i} be the coordinates where T
has a value ≤ (m′d)i. By definition, we have ∅ ⊆ R1 ⊆ · · · ⊆ Rd+2 ⊆ {1, . . . , d}. Applying
the pigeonhole principle on the cardinalities of these sets, there are 1 ≤ i < j ≤ d+ 2 such
that Ri = Rj .

Let us set n′ := (m′d)j . By construction, we have n′ ≥ m′. Now, consider the sum∑
i′∈Rj

Ti′ . As Rj = Ri, we know that for every i′ ∈ Rj , we have Ti′ ≤ (m′d)i. Thus, the

sum is at most d times this value because T is a d-tuple. Formally,
∑

i′∈Rj
Ti′ is at most

d(m′d)i, hence it is ≤ (m′d)i+1

m′ , so it is ≤ n′

m′ by definition of n′ = (m′d)j because i < j. This
concludes the proof.

With Claim 6.4, it is now easy to show Lemma 6.3:

Proof of Lemma 6.3. Let n be the value given by Claim 6.4 when taking d := 2 |Σ| and
m′ := (m+ 1)m.

Let us consider any pair of words u1, u2 ∈ Σ∗. Let T be the d-tuple of the letter
occurrences of u1, followed by those of u2. The statement of Claim 6.4 ensures that there
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exists an integer n′ with n′ ≥ m′ > m > 0 such that, when using n′ as the rare-frequent
threshold, the total number of rare letters in u1 plus in u2 is ≤ n′

m′ .

Now, let us show that n′

m′ ≤ n′

m − 1. To this end, as m′ = m(m + 1), first note that
n′

m′ ≤ n′

m+1 . To show now that n′

m+1 ≤ n′

m − 1, let us evaluate n′

m − 1 − n′

m+1 and check

that it is nonnegative. This difference evaluates to n′−m(m+1)
m(m+1) . Now, we have n′ ≥ m′, so

n′ ≥ m(m+ 1), which is ≥ 0. So indeed n′

m′ ≤ n′

m − 1.
Combining the conclusions of the two previous paragraphs, we obtain that the total

number of rare letters u1 plus in u2 is ≤ n′

m − 1. So the same is true of the rare letters in u1,
and of the rare letters in u2. By contrast, the frequent letters in u1 occur > n′ times by
definition, and the same is true of the frequent letters in u2. Hence, by Definition 6.1, the
value n′ is an m-distant rare-frequent threshold for u1 and for u2, concluding the proof.

Thus, we have shown that, for any alphabet size and desired distance m, we can pick
a value n ensuring that for any two words we can use some 0 < n′ ≤ n as an m-distant
rare-frequent threshold for them.

6.2. Choice of threshold and resulting properties. In the rest of this section, we
instantiate the generic argument of the previous section to the choice of an arbitrary
semigroup S and its category of idempotents SE: we claim the existence of a suitably distant
rare-frequent threshold, and observe that it additionally ensures the strong connectedness
of the category. However, the argument is still generic in the sense that it applies to an
arbitrary semigroup S, even if it is not in ZG.

Let us first rephrase Lemma 6.3 to this setting by picking as alphabet the arrows B of
the category of idempotents SE of S and by choosing m := |S|. We immediately obtain:

Claim 6.5. Let S be a semigroup and let SE be its category of idempotents. There exists
an integer n > 0 ensuring the following: for any paths u1, u2 in SE, there is 0 < n′ ≤ n
which is a |S|-distant rare-frequent threshold for u1 and for u2.

The rephrasing of Lemma 6.2 is:

Claim 6.6. If a path u in SE has an |S|-distant rare-frequent threshold, then for any
frequent arrow a, the path u has a factor containing no rare arrow and containing at least
m+ 1 occurrences of a.

We now close the section by observing that having an m-distant rare-frequent threshold
for a path w, indeed having simply an 1-distant rare-frequent threshold for w, enforces a
strong connectedness property on the category. Specifically, the set of frequent arrows in
this path for this threshold must form a so-called union of strongly connected components
(SCCs):

Definition 6.7. Given SE and a subset B′ of its set of arrows B, we say that B′ is a union
of SCCs if, letting G be the directed graph on the objects of SE formed of the arrows of B′,
then all connected components of G are strongly connected.

Claim 6.8. Fix S and SE and B, let w ∈ B∗ be a path of SE, and let n′ > 0 be a 1-distant
rare-frequent threshold of w. Then the set of frequent arrows of w for n′ is a union of SCCs.

Proof. Consider G the directed graph of Definition 6.7. Let us assume by way of contradiction
that G has a connected component which is not strongly connected. This means that there
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exists an edge (u, v) of G such that there is no path from u to v in G. Consider any frequent
arrow a in SE achieving the edge (u, v) of G.

As a is frequent in w, we know that a occurs strictly more than n′ times in w, hence
w contains at least n′ return paths, i.e., paths from the ending object v of a back to the
starting object u of a. As there is no path from v to u in G, each one of these paths must
contain an arrow of B which is rare in w.

Hence, the total number of rare arrows in w is at least n′. But the 1-distant rare-frequent
threshold condition imposes that the total number of rare arrow occurrences in w is ≤ n′− 1.
We have thus reached a contradiction.

7. The Loop Insertion and Prefix Substitution Lemmas

We now show two auxiliary results on the category of idempotents of LZG semigroups, to
be used in the sequel. The first result is the loop insertion lemma: it allows us to insert
any loop of frequent arrows to the power ω without affecting equivalence. The second is
the prefix substitution lemma: it allows us to replace a prefix of frequent arrows by another,
without affecting equivalence, up to inserting a loop later in the path.

The results shown in this section hold for semigroups in LZG, hence for those in LZGp

for any p > 0. Thus, let us fix a semigroup S in LZG. Recall that SE denotes the category
of idempotents of S, and denote by B the set of arrows of SE.

Remember that, by definition of the category of idempotents SE, for any idempotent e
of S, the set of loops with starting and ending object e under the product law of the category
forms a monoid which is isomorphic to the local monoid eSe of S. As we know that S is
in LZG, all its local monoids are in ZG. Hence the ZG equation immediately applies to
loops in the category of idempotents, which we will often use in the results of this section:

Claim 7.1. Let x and y be two coterminal loops of SE, let k ∈ Z, and let ω be an idempotent
power of S. We have: xω+ky ≡ yxω+k.

7.1. Loop insertion lemma. The loop insertion lemma allows us, when we have a suffi-
ciently distant rare-frequent threshold n′, to insert any arbitrary loop raised to the power ω
without changing the category element to which a path evaluates. We also show that this
change does not affect n′, ω-equivalence: this will suffice to preserve n′, p-equivalence (where
p is the period of S), which will be useful later (we come back to this at the beginning of
Section 8). Formally:

Lemma 7.2 (Loop insertion lemma). Let π be a path, and assume that n′ is an |S|-distant
rare-frequent threshold for π. Let π = rt be a decomposition of π (with r or t possibly empty),
let o be the object between r and t (i.e., the ending object of r, or the starting object of t if r
is empty), and let π′ be a loop on o that only uses frequent arrows. Then π ≡ r(π′)ωt. (Note
that these two paths are also n′, ω-equivalent by construction.)

In the rest of this subsection, we show Lemma 7.2. We first rephrase the claim to the
following auxiliary result:

Claim 7.3. Let π be a path, and assume that n′ is an |S|-distant rare-frequent threshold
for π. Let π = rt be a decomposition of π and o be the object between r and t. Let X be
the set of elements of the local monoid on o that can be achieved as some loop qx of frequent
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arrows raised to the power ω: formally, X is the set of elements x ∈ S such that there is a
loop qx of frequent arrows such that qωx evaluates to (o, x, o), noting that this implies that
x is idempotent. Then letting q :=

∏
x∈X qωx , we have that π ≡ rqt. (Note that these two

paths are also n′, ω-equivalent by construction.)

Intuitively, in this claim, X stands for the set of elements of S that we can achieve as
a loop on o raised at the power ω and using frequent arrows only. The claim states that
inserting loops of this form at o to achieve all such elements x will preserve equivalence.

We first explain why Claim 7.3 implies Lemma 7.2. Indeed, when taking p = rt, letting
o be the object between r and t, and taking r(π′)ωt, the sets X defined in Claim 7.3 after
the occurrence of r in p = rt and r(π′)ωt will be the same for both paths (because X only
depends on o). Thus, Claim 7.3 implies that there is a loop q such that rt ≡ rqt and
r(π′)ωt ≡ rq(π′)ωt. Now, as (π′)ω must correspond to an arrow of the form (o, x, o) for
x ∈ X, it must be the same idempotent as one of the idempotents achieved by one of the
loops in the definition of q, and as the local monoid is in ZG these idempotents commute and
q ≡ q(π′)ω. Hence, we have rqt ≡ rq(π′)ωt. We know that rqt ≡ rt, and rq(π′)ωt ≡ r(π′)ωt.
Thus we obtain rt ≡ r(π′)ωt. Thus, Lemma 7.2 is proved once we have shown Claim 7.3.

Hence, all that remains is to show Claim 7.3. We will do so by establishing a number of
claims.

We first show that, for any frequent arrow x, we can insert some loop of the form xu
where u is a return path using only frequent arrows, while preserving equivalence. This
uses the notion of distant rare-frequent threshold; specifically, this is where we perform the
pumping made possible by Claim 6.6.

Claim 7.4. Let π = rt be a path with an |S|-distant rare-frequent threshold, let o be
the object between r and t, and let x be any frequent arrow starting at o. Then we have
π ≡ r(xu)ωt for some return path u using only frequent arrows.

Proof. As x is a frequent arrow and π has an |S|-distant threshold, we know by Claim 6.6
that π contains a factor ρ that contains only frequent arrows and contains k > |S| occurrences
of x. This provides a decomposition of ρ in the form: ρ = ρ1xρ2x · · · ρkxs.

By the pigeonhole principle, there exists i < j such that ρ1x · · · ρix ≡ ρ1x · · · ρjx. Hence,
iterating, we obtain:

ρ1x · · · ρjx ≡ ρ1x · · · ρix(ρi+1x · · · ρjx)ω.
Moving the ω, we get:

ρ1x · · · ρjx ≡ ρ1x · · · ρi−1xρi(xρi+1x · · · ρj)ωx.

This proves that ρ and h(xu)ωg achieve the same category element when taking u :=
ρi+1x · · · ρj , h := ρ1x · · · ρi−1xρi and g := xρj+1x · · · ρkxs. By compositionality, π and
h′(xu)ωg′ achieve the same category element, where h′ is the part of π preceding ρ followed
by h, and g′ is g followed by the part of π following ρ.

Now, recall that we must show the result for our decomposition π = rt, where the
object o between r and t is the starting object of the arrow x and the ending object of h.
Either h′ is a prefix of r, or vice-versa. Assume first that we are in the first case, so h′ = rw
for some path w. Then, w and (xu)ω belong to the local monoid of o which is in ZG.
Since idempotents commute with all elements, we have w(xu)ω ≡ (xu)ωw establishing that
rw(xu)ωg′ ≡ r(xu)ωwg′ ≡ r(xu)ωt since wg′ = t. The other case is symmetrical. This
concludes the proof of Claim 7.4.
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We then prove a generalization of the previous claim, going from a single frequent arrow
to an arbitrary path of frequent arrows:

Claim 7.5. Let π = rt be a path with an |S|-distant rare-frequent threshold. Let o be the
object between r and t. Let h be any path starting at o which only uses frequent arrows.
Then we have π ≡ r(hg)ωt for some return path g using only frequent arrows.

Proof. We show the claim by induction on the length of h. The base case of the induction,
with h of length 0, is trivial with g also having length 0.

For the inductive claim, write h = h′a. Intuitively, we will insert a loop starting with the
path h′, then insert a loop starting with the arrow a within that loop, and then recombine.

Formally, by induction hypothesis, there exists a g′ using only frequent arrows such
that:

π ≡ r(h′g′)ωt.

Furthermore, by applying Claim 7.4 to the decomposition r′ = rh′ and t′ = g′(h′g′)ω−1t and
with the frequent arrow a we get a return path u using only frequent arrows such that:

r(h′g′)ωt ≡ rh′(au)ωg′(h′g′)ω−1t

So, iterating the ω power, and combining with the preceding equation, we get:

π ≡ rh′((au)ω)ωg′(h′g′)ω−1t.

Now, by applying ω − 1 times Claim 7.1 to each (au)ω except the first and to each loop
going from after this (au)ω to the position between an occurrence of h′ and g′, we get that:

π ≡ rh′(au)ωg′(h′(au)ωg′)ω−1t.

Note the right-hand side is equal to: r(h′(au)ωg′)ωt. So we have shown:

π ≡ r(h′(au)ωg′)ωt.

So this establishes the inductive claim by taking g := u(au)ω−1g′.

We are interested in the specialization of this result when the path of frequent arrows
to insert is a loop. In this case, the return path is also a loop. Formally, the specialization is
the following:

Corollary 7.6. Let π = rt be a path with an |S|-distant rare-frequent threshold n′, let o be
the object between r and t, and let q be a loop on o using only frequent arrows. We have
that rt ≡ rqω(q′)ωt for some loop q′ on o using only frequent arrows (note that the two are
also n′, ω-equivalent).

Proof. We use Claim 7.5 with h := q. This gives us the existence of a return path g using
only frequent arrows, which is then also a loop on o, such that rt ≡ r(qg)ωt. Now, applying
Lemma 3.8 to the local monoid on object o, we know that this evaluates to the same category
element as rqωgωt. Taking q′ := g concludes the proof of Corollary 7.6.

The only step left is to argue that Corollary 7.6 implies our rephrasing (Claim 7.3) of
the loop insertion lemma (Lemma 7.2). To do this, let π = rt be the path, let o be the object
between r and t, and let X be the set of idempotents definable from frequent arrows. Let
us write X = {x1, . . . , xk} with k = |X|. For each 1 ≤ i ≤ k, take a loop qi on o consisting
only of frequent arrows that achieves xi, i.e., which ensures that qωi evaluates to (o, xi, o).
Now, we apply Corollary 7.6 k times with q being each of the loops q1, . . . , qk. We get the
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following, where q′1, . . . , q
′
k are the loops q′ on o of frequent arrows obtained by the statement

of Corollary 7.6:

rt ≡ rqω1 (q
′
1)

ω · · · qωk (q′k)ωt
Note that the left-hand-side and right-hand-side are also n′, ω-equivalent.

Now, since the q′i are loops on o consisting of frequent arrows, each (q′i)
ω evaluates to

(o, x, o) for some x ∈ X. As the elements of X are in the local monoid of o which is in ZG,
commuting the loops using Claim 7.1, we can combine each (q′i)

ω with some qωj such that

(q′i)
ω ≡ qωj , hence (q′i)

ωqωj = qωj . Thus, we get that rt is n′, ω-equivalent to, and evaluates to
the same category element as, the path:

r
∏
x∈X

qωx t.

This concludes the proof of Claim 7.3, and thus establishes our desired result, Lemma 7.2.

7.2. Prefix substitution lemma. The prefix substitution lemma allows us to change any
prefix of frequent arrows of a path, up to inserting a loop of frequent arrows elsewhere:

Lemma 7.7. Let π = xry be a path, and assume that n′ is an |S|-distant rare-frequent
threshold for π. Let x′ be a path coterminal with x. Assume that every arrow in x and in
x′ is frequent. Assume that some object o in the SCC of frequent arrows of the starting
object of r occurs again in y, say as the intermediate object of y = y1y2. Then there exists
y′ = y1y

′′y2 for some loop y′′ consisting only of frequent arrows such that π ≡ x′ry′ and such
that π and x′ry′ are n′, ω-equivalent.

This lemma uses Claim 6.8 to argue that frequent arrows are a union of SCCs. Its proof
relies on the loop insertion lemma (Lemma 7.2), but with extra technical work using the
ZG equation.

To prove Lemma 7.7, we will first show that frequent loops can be “recombined” without
changing the category image, simply by equation manipulation:

Claim 7.8. For x, x′ two coterminal paths in SE and y, y′ coterminal paths in SE such that
xy and x′y′ are valid loops, we have: (xy)ω(x′y′)ω ≡ (xy′)ω(x′y)ω(xy)ω(x′y′)ω.

Proof. Let us first show that:

(xy)ω(x′y′)ω ≡ x′y(xy)ω−1(x′y′)ω−1xy′ (7.1)

To show Equation 7.1, first rewrite (xy)ω as x(yx)ω−1y and likewise for (y′x′)ω, to get:

(xy)ω(x′y′)ω ≡ x(yx)ω−1yx′(y′x′)ω−1y′

Then, we use Claim 7.1 to move (yx)ω−1, so the above evaluates to the same category
element as:

xyx′(yx)ω−1(y′x′)ω−1y′

We again rewrite (yx)ω−1 to y(xy)ω−2x, yielding:

xyx′y(xy)ω−2x(y′x′)ω−1y′

We again use Claim 7.1 to move (xy)ω−2, merge it with the prefix xy, and move it back to
its place, yielding:

x′y(xy)ω−1x(y′x′)ω−1y′
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We rewrite (y′x′)ω−1 to y′(x′y′)ω−2x′, yielding:

x′y(xy)ω−1xy′(x′y′)ω−2x′y′

Again by Claim 7.1, we can merge (x′y′)ω−1 with x′y′ and move it to finally get:

x′y(xy)ω−1(x′y′)ω−1xy′

Thus, the left-hand side of Equation 7.1 evaluates to the same category element as the
right-hand side, and we have shown Equation 7.1.

Now, we have (xy)ω(x′y′)ω ≡ (xy)2ω(x′y′)2ω, so using Claim 7.1 again, Equation 7.1
gives:

(xy)ω(x′y′)ω ≡ x′y(xy)ω(x′y′)ω(xy)ω−1(x′y′)ω−1xy′

We can now use Equation 7.1 to replace (xy)ω(x′y′)ω by the right-hand side of Equation 7.1
and use Claim 7.1 to commute, yielding:

(xy)ω(x′y′)ω ≡ (x′y)2(xy)ω−2(x′y′)ω−2(xy′)2

By definition we have (xy)ω−2 ≡ (xy)ω−2(xy)ω and (x′y′)ω−2 ≡ (x′y′)ω(x′y′)ω−2. Injecting
these in the equation above, we get:

(xy)ω(x′y′)ω ≡ (x′y)2(xy)ω−2 (xy)ω(x′y′)ω︸ ︷︷ ︸
(⋆)

(x′y′)ω−2(xy′)2

Note that (⋆) is now equal to the left-hand-side of the equation. Substituting ω times the
right-hand-side into (⋆), we obtain:

(xy)ω(x′y′)ω ≡ (x′y)ω(xy)ω(x′y′)ω(xy′)ω

As these elements commute (thanks to Claim 7.1), we have shown the desired equality.

We will now extend this result to show that we can change the initial part of a path,
even if it is not a loop, provided that there is a coterminal path under an ω-power with
which we can swap it.

Claim 7.9. For x, x′ two coterminal paths in SE and y, y′ coterminal paths in SE such that
xy and x′y′ are valid loops, and for any path t coterminal with y, the following equation
holds: xt(xy)ω(x′y′)ω ≡ x′t(xy)ωxy′(x′y′)ω−1.

We establish this again by equation manipulation.

Proof of Claim 7.9. We apply Claim 7.8 to show the following equality about the left-hand
side:

xt(xy)ω(x′y′)ω ≡ xt(xy′)ω(x′y)ω(xy)ω(x′y′)ω

By commutation of (x′y)ω thanks to Claim 7.1, the right-hand side evaluates to the same
category element as:

(x′y)ωxt(xy′)ω(x′y′)ω(xy)ω

By expanding (x′y)ω = x′(yx′)ω−1y, we get:

x′(yx′)ω−1yxt(xy′)ω(x′y′)ω(xy)ω

By commutation of (xy)ω and expanding it to x(yx)ω−1y, we get:

x′(yx′)ω−1yx(yx)ω−1yxt(xy′)ω(x′y′)ω

Combining (yx)ω−1 with what precedes and follows, we get:

x′(yx′)ω−1(yx)ω+1t(xy′)ω(x′y′)ω
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By expanding (x′y′)ω = x′(y′x′)ω−1y′, and commuting (yx′)ω−1 and (yx)ω+1, we get:

x′t(xy′)ωx′(yx′)ω−1(yx)ω+1(y′x′)ω−1y′

Now, we have x′(yx′)ω−1 = (x′y)ω−1x′, so we get:

x′t(xy′)ω(x′y)ω−1x′(yx)ω+1(y′x′)ω−1y′

Commuting (y′x′)ω−1 and doing a similar transformation, we get:

x′t(xy′)ω(x′y)ω−1(x′y′)ω−1x′(yx)ω+1y′

Now, expanding (yx)ω+1, we get:

x′t(xy′)ω(x′y)ω−1(x′y′)ω−1x′y(xy)ωxy′

Commuting (x′y)ω−1 and merging it with x′y, we get:

x′t(xy′)ω(x′y′)ω−1(x′y)ω(xy)ωxy′

Note that (x′y′)ω−1 ≡ (x′y′)ω(x′y′)ω−1, so applying commutation we get:

x′t(xy′)ω(x′y′)ω(x′y)ω(xy)ω(x′y′)ω−1xy′

Now, applying Claim 7.8 in reverse (using commutation again), we can obtain:

x′t(x′y′)ω(xy)ω(x′y′)ω−1xy′

Then commuting (x′y′)ω and merging it yields:

x′t(xy)ω(x′y′)ω−1xy′

A final commutation of (x′y′)ω−1 yields the desired right-hand side, and we have preserved
equivalence in the category of idempotents, establishing the result.

With Claim 7.9 in hand, and using Lemma 7.2, we can now prove Lemma 7.7:

Proof of Lemma 7.7. As n′ is an |S|-distant rare-frequent threshold, it is in particular a
1-distant rare-frequent threshold, so we know by Claim 6.8 that the frequent arrows occurring
in π are a union of SCCs. Thus, there is a return path s for x′ (i.e., x′s is a loop, hence xs
also is) where s only consists of frequent arrows.

By our hypothesis on the starting object of r, we can decompose y = y1y2 such that
the ending object of y1 and starting object of y2 is an object o which is in the SCC of
frequent arrows of the starting object o′ of r. Let ρ1 be any path of frequent arrows from
o to o′, and ρ2 be any path of frequent arrows from o′ to o. Now, take π′ to be the loop
ρ1s(xs)

ω(x′s)ωxρ2: note that all arrows of π′ are frequent. Hence, by Lemma 7.2, xry
evaluates to the same category element as, and is n′, ω-equivalent to,

xry1(π
′)ωy2 = xry1(ρ1s(xs)

ω(x′s)ωxρ2)
ωy2

By unfolding the power ω, we get the following:

xry1(π
′)ωy2 = xry1ρ1s(xs)

ω(x′s)ωxρ2(ρ1s(xs)
ω(x′s)ωxρ2)

ω−1y2 = xry1ρ1s(xs)
ω(x′s)ωxz

where we write z := ρ2(s(xs)
ω(x′s)ωx)ω−1y2 for convenience. We can therefore apply

Claim 7.9 to obtain that:

(x(ry1ρ1s))(xs)
ω(x′s)ωxz ≡ (x′(ry1ρ1s))(xs)

ω(xs)(x′s)ω−1xz.

What is more, these two paths are clearly n′, ω-equivalent, as they only differ in terms of
frequent arrows (all arrows in x and x′ being frequent) and the number of these arrows
modulo ω is unchanged by the transformation. This path is of the form given in the
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statement, taking y′ := y1ρ1s(xs)
ω(xs)(x′s)ω−1xz from which we can extract the right y′′.

This concludes the proof.

8. Concluding the Proof of the Main Result (Theorem 1.1)

We are now ready to prove the second direction of Theorem 1.1, namely Claim 5.7. Let us
fix the semigroup S in LZGp, write SE its category of idempotents, and write B for the set
of arrows of SE. Let p

′ be the period of S: we know that p′ divides the idempotent power ω
of S. Further, p′ divides p: this is because, for any group element x of S, we have that x
belongs to the local monoid xωSxω, hence it belongs to ZGp and its period divides p, thus
p′ is a multiple of the periods of all group elements, hence it divides p.

Let n be given by Claim 6.5. Our goal is to show that the n, p-congruence on B∗ is
compatible with SE. We will in fact show the same for the n, p′-congruence, which is coarser
than the n, p-congruence because p′ divides p (using Claim 3.2), so suffices to establish the
result.

To do so, we will show that two coterminal paths that are n, p′-equivalent must evaluate
to the same category element, by two nested inductions. We first explain the outer induction,
which is on the number of rare arrows in the paths, for an |S|-distant rare-frequent threshold
n′ ≤ n chosen from the two paths that we consider (via Claim 6.5). The threshold n′ is not
fixed from the beginning but it depends on the two paths considered, which is why we will
not fix it in the inductive claim. However, we will only apply the claim to one value of n′

chosen from the initial paths, i.e., it will not change during the induction.
Formally, we show by induction on the integer r the following:

Claim 8.1 (Outer inductive claim on r). For any two paths π1 and π2, for any |S|-distant
rare-frequent threshold n′ for π1 and π2, if π1 and π2 are n′, p′-equivalent and contain r rare
arrows each, then we have π1 ≡ π2.

Once we have established this, we can conclude the proof of Claim 5.7. To do so, take
any two coterminal paths π1 and π2 that are n, p′-equivalent. By Claim 6.5, we can pick
a threshold n′ (depending on u1, u2, and n) such that 0 < n′ ≤ n which is an |S|-distant
rare-frequent threshold for π1 and π2. By Claim 3.2, as π1 and π2 are n, p′-equivalent, we
know that they are also n′, p′-equivalent. Now that we have fixed the threshold n′, following
Definition 3.1, we call an arrow of B rare in u1 and u2 if it occurs ≤ n′ times in each, and
frequent otherwise. Let r0 be the number of rare arrows in u1 and u2: this number is the
same for both, because they are n′, p′-equivalent. We now apply the outer inductive claim
(Claim 8.1) on π1, π2, n

′, and r = r0, to conclude that π1 ≡ π2, which concludes the proof
of Claim 5.7.

It remains to show Claim 8.1, which we do in the rest of the section.

8.1. Outer base case (B): all arrows in π1 and π2 are frequent. We now show
Claim 8.1. The base case of the outer induction is for paths that contain no rare arrows:

Claim 8.2. For any two paths π1 and π2, for any |S|-distant rare-frequent threshold n′

for π1 and π2, if π1 and π2 are n′, p′-equivalent and contain no rare arrows, then we have
π1 ≡ π2.
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We prove this result by an induction over the number of different arrows that occur in
the paths π1 and π2, noting that thanks to n′, p′-equivalence an arrow occurs in π1 iff it
occurs in π2. Specifically, we show by induction on the integer f the following:

Claim 8.3 (Inner inductive claim on f). For any two paths π1 and π2, for any |S|-distant
rare-frequent threshold n′ for π1 and π2, if π1 and π2 are n′, p′-equivalent and contain no
rare arrows and there are ≤ f different frequent arrows that occur, then we have π1 ≡ π2.

Once we have established this, we can conclude the proof of the base case of the outer
induction, Claim 8.2. To do so, take any two coterminal paths π1 and π2 and an |S|-distant
rare-frequent threshold n′ such that π1 and π2 are n′, p′-equivalent, let f0 be the number of
frequent arrows that occur in π1 and in π2, and conclude using Claim 8.3 with π1, π2, n

′,
and f = f0.

We now explain the proof of the inner inductive claim (Claim 8.3), before moving on to
the inductive case of the outer induction. The base case of Claim 8.3 with f = 0 is trivial
as π1 and π2 are then empty. For the induction step, assume that the claim holds for any
π1, π2, and n′ such that there are ≤ f different frequent arrows that occur. Fix π1, π2,
and n′ where there are ≤ f + 1 frequent arrows that occur. Consider the multigraph G
of all arrows of SE that occur in π1 and π2: G has ≤ f + 1 edges. If it has ≤ f edges we
immediately conclude by induction hypothesis, so assume it has exactly f + 1 edges. Recall
that G is strongly connected: indeed, as all arrows are frequent, thanks to the existence
of the |S|-distant rare-frequent threshold n′ (which is in particular 1-distant), we know by
Claim 6.8 that G is a union of SCCs. Further, π1 (or π2) is a path where all edges of G occur,
so it witnesses that G is connected, and G is therefore strongly connected. The induction
case is shown using a so-called ear decomposition result on strongly connected multigraphs:

Lemma 8.4 [BJG08]. Let G be a strongly connected nonempty directed multigraph. We
have:

• G is a simple cycle; or
• G contains a simple cycle v1 → · · · → vn → v1 with n ≥ 1, where all vertices v1, . . . , vn are
pairwise distinct, such that all intermediate vertices v2, . . . , vn−1 only occur in the edges
of the cycle, and such that the removal of the cycle leaves the graph strongly connected
(note that the case n = 1 corresponds to the removal of a self-loop); or

• G contains a simple path v1 → · · · → vn with n ≥ 2 where all vertices are pairwise distinct,
such that all intermediate vertices v2, . . . , vn−1 only occur in the edges of the path, and
such that the removal of the path leaves the graph strongly connected (note that the case
n = 2 corresponds to the removal of a single edge).

This is a known result [BJG08], but we give a self-contained proof in Appendix A for
the reader’s convenience.

Thanks to this result, we can distinguish three cases in the inner induction step: if
G is non-empty, it must be a simple cycle, contain a removable simple cycle, or contain a
removable simple path. We first give a high-level view of the argument in each case:

Proof sketch. The first case (B.1) is when G is a simple cycle. In this case n′, p′-equivalence
ensures that the cycle is taken by π1 and π2 some number of times with the same remainder
modulo p′, so they evaluate to the same element because p′ is a multiple of the period.

The second case (B.2) is when G contains a removable simple cycle. This time, we argue
as in the previous case that the number of occurrences of the cycle must have the same
remainder, and we can use Corollary 3.7 to merge all the occurrences together. However, to
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eliminate them, we need to use Lemma 7.7, to modify π1 and π2 to have the same prefix
(up to and including the cycle occurrences), while preserving equivalence. This allows us
to consider the rest of the paths (which contains no occurrence of the cycle), apply the
induction hypothesis to them, and conclude by compositionality. A technicality is that we
must ensure that removing the common prefix does not make some arrows insufficiently
frequent relative to the distant rare-frequent threshold. We avoid this using Lemma 7.2 to
insert sufficiently many copies of a suitable loop.

The third case (B.3) is when G contains a removable simple path τ . The reasoning is
similar, but we also use Lemma 7.2 to insert a loop involving a return path for τ and a path
that is parallel to τ (i.e., does not share any arrows with it). The return path in this loop
can then be combined with τ to form a loop, which we handle like in the previous case.

We now give the detailed argument for each case.

Case B.1: G is a simple cycle. If G is a simple cycle, then distinguish the starting object
of π1 (hence, of π2) as o, and let α be the cycle from o to itself, and τ the path from o to
the common ending object of π1 and π2. We have: π1 = αn1τ and π2 = αn2τ with n1 and
n2 being ≥ n′ − 1 and having the same remainder r modulo p′. We use the loop insertion
lemma (Lemma 7.2) to insert αω: the lemma tells us that π1 and π2 respectively evaluate to
the same category element as π′

1 = αω+n1 and π′
2 = αω+n2 . Further, π1 and π′

1, and π2 and
π′
2, are n′, p′-equivalent.

As α is a loop on the idempotent o, we know that there exists an element m ∈ oSo
such that α ≡ (o,m, o). Hence, π′

1 = αω+n1τ ≡ (o,mω+n1 , o)τ (resp. π′
2 = αω+n2τ ≡

(o,mω+n2 , o)τ). Now, we have mω+n1 = mω+k1·p′+r and mω+n2 = mω+k2·p′+r where k1 and
k2 are the respective quotients of n1 and n2 in the Euclidean division by p′ and where r is
the common remainder modulo p′. By definition of the period p′, we have mω+n1 = mω+r

and mω+n2 = mω+r. We conclude that mω+n1 = mω+n2 , so that π′
1 ≡ π′

2, and π1 ≡ π2. This
concludes case B.1.

Case B.2: G has a simple cycle. Recall that, in this case, we know that G has a simple
cycle whose intermediate objects have no other incident edges and such that the removal of
the simple cycle leaves the graph strongly connected. Let α be the simple cycle, starting
from the only object o of the cycle having other incident edges. We can then decompose π1
and π2 to isolate the occurrences of the simple cycle (which must be taken in its entirety),
i.e.:

π1 = x1αx2αx3 · · ·xt−1αxt

π2 = y1αy2αy3 · · · yt′−1αyt′

This ensures that the edges of α do not occur elsewhere than in the α factors, except
possibly in x1, y1 and in xt, yt′ if the paths π1 and/or π2 start and/or end in the simple
cycle. This being said, in that case, we know that the prefixes of π1 and π2 containing this
incomplete subset of the cycle must be equal (same sequence of arrows), and likewise for
their suffixes. For this reason, it suffices to show the claim that π1 and π2 evaluate to the
same category element under the assumption that both their starting and ending objects
are not intermediate vertices of the cycle. The claim then extends to the general case, by
adding the common prefixes and suffixes to the two paths that satisfy the condition, using
compositionality of the congruence. Thus, in the rest of the proof for this case, we assume
that the edges of α only occur in the α factors.
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We will now argue that, to show that π1 ≡ π2, it suffices to show the same of two
n′, p′-equivalent coterminal paths from which all occurrences of the edges of the cycle have
been removed and where all other edges still occur sufficiently many times. As this deals
with paths where the underlying multigraph contains fewer edges, the induction hypothesis
will conclude.

To do this, by Lemma 7.7, as x1 and y1 are coterminal and consist only of frequent arrows,
and as the starting object of α occurs again in both paths, the path π1 is n′, ω-equivalent,
and evaluates to the same category element as, some path:

π′
1 = y1αx

′
2αx

′
3 · · ·x′t′′−1αx

′
t′′

The above is also n′, p′-equivalent to π1, because p′ divides ω. Thus, up to replacing π1
by π′

1, we can assume that x1 = y1.
Now, furthermore, x2, . . . , xt−1 (resp. y2, . . . , yt′−1) and α are coterminal cycles over the

object o (which by definition corresponds to an idempotent of S). Hence, αx2αx3 · · ·xt−1α ≡
(o,mm2mm3 · · ·mt−1m, o) where α ≡ (o,m, o), xi ≡ (o,mi, o) for 2 ≤ i ≤ t− 1 and where
m and all mi’s are in oSo, which is by hypothesis a monoid in ZG. Now, as the arrows
of α are frequent, each one of them must occur > n′ times, so α (which contains exactly
one occurrence of each of these arrows) must occur > n′ times, and as n′ is a |S|-distant
rare-frequent threshold we clearly have by Definition 6.1 that n′ ≥ |S|, so α occurs ≥ |S|+ 1
times. Hence, by Corollary 3.7, we know that mm2mm3 · · ·mt−1m = mt−1m2m3 · · ·mt−1,
because |S|+ 1 ≥ |oSo|+ 1. By applying the same reasoning to π2, it suffices to show that
the two following paths evaluate to the same category element, where x1 = y1:

x1α
t−1x2x3 · · ·xt−1xt

y1α
t′−1y2y3 · · · yt′−1yt′

Now, because these two paths are n′, p′-equivalent, we know that t− 1 and t′ − 1 have the
same remainder modulo p′. By the same reasoning as in case B.1, they evaluate to the
same category element as αr, where r is the remainder. So it suffices to show that the two
following paths evaluate to the same category element, with x1 = y1:

x1α
rx2x3 · · ·xt−1xt

y1α
ry2y3 · · · yt′−1yt′

We now intend to use the induction hypothesis, but for this, we need to ensure that n′ is
still an |S|-distant rare-frequent threshold on the paths to which we apply it. Specifically,
we need to ensure that the edges not in α still occur sufficiently many times. To this
end, let β be any loop on o that visits all edges of G except the ones in α: this is doable
because G is still strongly connected after the removal of α. Up to exponentiating β to some
power βn′′ω, we can assume that β traverses each edge sufficiently many times to satisfy the
lower bound imposed by the requirement of n′ being an |S|-distant rare-frequent threshold.
By Lemma 7.2, it suffices to show that the following paths evaluate to the same category
element:

π′
1 = x1α

rβn′′ωx2x3 · · ·xt−1xt

π′
2 = y1α

rβn′′ωy2y3 · · · yt′−1yt′

Note that n′, p′-equivalence is preserved because n′′ is a multiple of ω, hence of p′. Now,
observe that both paths start by x1α = y1α, and the arrows of α do not occur in the rest
of the paths. Consider the paths βn′′ωx2x3 . . . xt and βn′′ωy2y3 . . . yt′ . They are paths that
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are coterminal, n′, p′-equivalent because π1 and π2 were, where the frequent letters that are
used are a strict subset of the ones used in π1 and π2, and where all other frequent letters
occur sufficiently many times for n′ to still be an |S|-distant rare-frequent threshold (as

guaranteed by βn′′ω). Thus, by induction hypothesis of the inner induction, we know that
these two paths evaluate to the same category element, so that π′

1 and π′
2 also do. This

concludes case B.2.

Case B.3: G has a simple path. Recall that, in this case, we know that G has a simple
path where the starting and ending objects of intermediate arrows have no other incident
edges, and such that the removal of the simple path leaves the graph strongly connected.
We denote the path by τ and denote by x ̸= y its starting and ending objects. Since the
removal of the path does not affect strong connectedness of the graph, there is a simple path
from x to y sharing no edges with τ , which we denote by κ. Furthermore, there is a simple
path from y to x sharing no edges with τ (this is because all intermediate objects of τ only
occur in the edges of τ), which we denote by ρ.

Like in the previous case, up to removing common prefixes and suffixes, it suffices to
consider the case where π1 and π2 do not start or end in the intermediate vertices of τ . For
that reason, isolating all occurrences of τ also isolates all occurrences of the edges of τ , and
we can write:

π1 = x1τx2τx3 · · ·xt−1τxt

π2 = y1τy2τy3 · · · yt′−1τyt′

where the xi and yi do not use the edges of τ . Like in the previous case, by Lemma 7.7, we
can assume that x1 = y1.

By Lemma 7.2, we insert a loop (ρκ)ω after every occurrence of τ without changing
the category element and still respecting the n′, ω-congruence, hence the n′, p′-congruence
because p′ divides ω. By expanding (ρκ)ω = ρκ(ρκ)ω−1, it suffices to show that the following
paths evaluate to the same category element, with x1 = y1:

π′
1 = x1τρκ(ρκ)

ω−1 · · ·xt−1τρκ(ρκ)
ω−1xt

π′
2 = y1τρκ(ρκ)

ω−1 · · · yt′−1τρκ(ρκ)
ω−1yt′

We can now regroup the occurrences of τρ, which are loops such that some edges (namely,
the edges of τ) only occur in these factors. This means that we can conclude as in case 2 for
the cycle τρ, as this cycle contains some edges that only occur there; we can choose β at the
end of the proof to be a loop on x visiting all edges of G except those of τ , which is again
possible because G is still strongly connected even after the removal of τ .

This establishes case 3 and concludes the induction step of the proof, establishing
Claim 8.3.

We have thus proved by induction that π1 and π2 evaluate to the same category element,
in the base case (Claim 8.2) of the outer induction (Claim 8.1) where all edges of π1 and π2
are frequent.

8.2. Outer induction step (I): some arrows are rare. Let us now show the induction
step for the outer induction (Claim 8.1), namely, the induction on the number of occurrences
of rare arrows. We assume the claim of the outer induction for r ∈ N. Consider two paths π1
and π2 and an |S|-distant rare-frequent threshold n′ such that π1 and π2 are n′, p′-equivalent
and such that they contain r + 1 rare letters. Let us partition them as π1 = q1as1 and
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π2 = q2as2 where q1 and q2 all consist of frequent arrows, and a is the first rare arrow of
π1 and π2 (note that n′, p′-equivalence implies that the first rare arrow is the same in both
paths). In this case, q1 and q2 are two coterminal paths consisting only of frequent arrows
(or they are empty), and s1 and s2 are two coterminal paths (possibly empty) with r rare
letter occurrences.

Remember that, as n′ is an |S|-distant rare-frequent threshold for π1 and π2, then we
know that the frequent arrows of π1 form a union of SCCs (Claim 6.8); note that, thanks
to n′, p′-equivalence, the same is true of π2 with the same SCCs. Consider the SCC C of
frequent arrows that contains the starting object of a. There are two cases, depending on
whether some object of C occurs again in s1 or not. Note that some object of C occurs again
in s1 iff the same is true of s2, because which frequent arrow components occur again is
entirely determined by the ending objects of the rare arrows of s1 and s2, which are identical
thanks to n′, p′-equivalence.

Case I.1: C occurs again after a. In this case, we are in a situation where we can apply
Lemma 7.7, because q1 and q2 only consist of frequent arrows and some object of the SCC C
of the starting object of a occurs again in s1. The lemma tells us that there is a path:

π′
1 = q2as

′
1

which evaluates to the same category element as π1 and is n′, ω-equivalent to it, hence
n′, p′-equivalent. Hence, by compositionality, it suffices to show that s′1 and s2 evaluate to
the same category element.

To apply the induction hypothesis, we simply need to ensure that n′ is still a |S|-distant
rare-frequent threshold for s′1 and s2. To do this, we need to ensure that the arrows that
are frequent in π1 and π2 are still frequent there, and still satisfy the |S|-distant condition.
Fortunately, we can simply ensure this by inserting a loop using Lemma 7.2. Formally, write
s′1 = r1t1 where the intermediate object is the object of the SCC C that occurred in s1 (the
existence of such a decomposition is a consequence of the statement of Lemma 7.7), and
write s2 = r2t2 in the same way (which we already discussed must be possible with s2).
Let β be an arbitrary loop of frequent arrows where all arrows of C occur: this is possible
because C is strongly connected. We know by Lemma 7.2 that s′1 = r1t1 and r1β

ωt1 are
both n′, ω-equivalent, hence n′, p′-equivalent, and evaluate to the same category element:
this is also true with w1 := r1β

n′′ωt1 for a sufficiently large n′′ such that every frequent
arrow of C occurs as many times as it did in π1. Likewise, s2 = r2t2 and w2 := r2β

n′′ωt2 are
both n′, p′-equivalent and evaluate to the same category element. So it suffices to consider
w1 and w2.

Let us apply the induction hypothesis to them. They are two coterminal paths, and
they are n′, p′-equivalent because w1 ∼n′,p′ π

′
1 ∼n′,p′ π1 and w2 ∼n′,p′ π2 and by hypothesis

π1 ∼n′,p′ π2. What is more, the arrows that were rare in π1 and π2 are still rare for them,
and they have r occurrences in total: this was true by construction of s1 and s2 and is true
of s′1 because π1 = q1as1 ∼n′,p′ q2as

′
1 and all arrows of q2 are frequent so the rare subwords

of s1 and s′1 are the same. The arrows that were frequent in π1 and π2 are still frequent in
s1 and s2 and occur at least as many times as they did in π1 and π2 respectively: we have
guaranteed this for the arrows of C by inserting βn′′ω, and this is clear for the arrows outside
of C as all their occurrences in π1 and π2 were in s1 and s2 respectively, and s′1 has at least
as many occurrences of every letter as s1 does (this is a consequence of the statement of
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Lemma 7.7). This ensures that s′1 ∼n′,p′ s2, and that n′ is still an |S|-distant rare-frequent
threshold for them.

Hence, by the induction hypothesis, we have s′1 ≡ s2, so that by compositionality we
have π1 ≡ π2.

Case I.2: C does not occur again after a. In this situation, we cannot apply Lemma 7.7.
However, intuitively, the arrows visited in q1 and in q2 must be disjoint from those visited in
the rest of the paths, so we can independently reason on q1 and q2, and on s1 and s2.

Formally, we first claim that q1 ≡ q2 by the base case (Claim 8.2) of the outer induction
(Claim 8.1). Indeed, first note that they are two coterminal paths. Now, there are two cases:
every arrow x which is frequent in π1 and π2 is either in the SCC C of the starting object
of a or not. In the first case, all the occurrences of x in π1 must be in q1, as any occurrence
of x in s1 would witness that we are in Case I.1; and likewise all its occurrences in π2 must
be in q2. In the second case, all its occurrences in π1 must be in s1 and all its occurrences
in π2 must be in s2, for the same reason. Thus, q1 and q2 contain no letter which was rare
in π1 and π2, some of the frequent letters of π1 and π2 (those of the other SCCs) do not
occur there at all, and the others occur there with the same number of occurrences. Thus
indeed q1 ∼n′,p′ q2, they contain no rare arrows, and n′ is still an |S|-distant rare-frequent
threshold for them. Thus, the base case of the outer induction concludes that they evaluate
to the same category element.

We now claim that s1 ≡ s2 by the induction case of the outer induction (Claim 8.1).
Indeed, they are again two coterminal paths. What is more, by the previous reasoning,
the arrows that are frequent in π1 and π2 either occur only in s1 and s2 or do not occur
there at all. Thus, s1 and s2 contain r rare arrows (for the arrows that were already rare
in π1 and π2), and the frequent arrows either occur in s1 and s2 with the same number
of occurrences as in π1 and π2 or not at all. This implies that n′ is still an |S|-distant
rare-frequent threshold for s1 and s2. Thus, we have s1 ∼n′,p′ s2 and the induction case of
the outer induction establishes that s1 ≡ s2.

Thus, by compositionality, we know that π1 and π2 evaluate to the same category
element. We have concluded both cases of the outer induction proof and shown Claim 8.1.

8.3. Concluding the proof. We have proven Claim 8.1, and explained afterwards how
to use it to show that π1 and π2 evaluate to the same category element. This implies that
n′, p′-equivalence for our choice of n′, hence also n, p-equivalence, is compatible with SE.
Thus, by Corollary 5.5 we know that L is in ZG ∗ Dp. Hence, L ∈ LZGp implies that
L ∈ ZG ∗ Dp, so we have shown Claim 5.7. Together with Claim 5.6, it establishes the
locality result LZGp = ZG ∗Dp, and we have shown Theorem 1.1.

9. Conclusion

In this paper, we have given a characterization of the languages of ZG, and proved that
the variety ZG is local. More specifically, we have shown this for all the varieties ZGp for
p > 0, in particular MNil = ZG1 = ZG ∩A.

A natural question for further study is whether the variety ZE is also local. This question
seems more complicated. Indeed, as proved by Almeida [Alm94], we have ZE = G ∨Com,
that is, ZE is the variety of monoids generated by the variety G of groups and the variety
Com of commutative languages. Now, G is a local variety [TW85, Example 1.3], while



Vol. 19:4 LOCALITY AND CENTRALITY: THE VARIETY ZG 4:29

Com is not [TW85, Example 1.4]. Further, as we have shown that LZG = ZG ∗D and
Com is a subset of ZG, the counter-example languages (e.g., e∗af∗be∗cf∗) to the locality
of Com (i.e., that are in LCom but not in Com ∗D) cannot be counter-examples to the
locality of ZE (because they are in LCom, hence LZG, hence ZG ∗ D, hence ZE ∗ D).
This being said, if ZE is indeed local, a proof would probably require different techniques
from ours, given that we do not see how our techniques could be used even to reprove the
locality of G.

We hope that extending our approach to a study of locality for centrally defined varieties
in general could lead to such general results on the interplay of join operations and of the
locality or non-locality for arbitrary varieties, in the spirit of the results shown in [CE13] for
various Mal’cev products.
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Appendix A. Self-contained proof of Lemma 8.4

Lemma 8.4 [BJG08]. Let G be a strongly connected nonempty directed multigraph. We
have:

• G is a simple cycle; or
• G contains a simple cycle v1 → · · · → vn → v1 with n ≥ 1, where all vertices v1, . . . , vn are
pairwise distinct, such that all intermediate vertices v2, . . . , vn−1 only occur in the edges
of the cycle, and such that the removal of the cycle leaves the graph strongly connected
(note that the case n = 1 corresponds to the removal of a self-loop); or

• G contains a simple path v1 → · · · → vn with n ≥ 2 where all vertices are pairwise distinct,
such that all intermediate vertices v2, . . . , vn−1 only occur in the edges of the path, and
such that the removal of the path leaves the graph strongly connected (note that the case
n = 2 corresponds to the removal of a single edge).

We repeat here that the result is standard. The proof given below is only for the reader’s
convenience, and follows [BJG08].

Proof. This result is showed using the notion of an ear decomposition of a directed multigraph.
Specifically, following Theorem 5.3.2 of [BJG08], for any nonempty strongly connected
multigraph G, we can build a copy of it (called G′) by the following sequence of steps, with
the invariant that G′ remains strongly connected:

• First, take some arbitrary simple cycle in G and copy it to G′;
• Second, while there are some vertices of G that have not been copied to G′, then pick
some vertex v of G that was not copied, such that there is an edge (v′, v) in G with v′ a
vertex that was copied. Now take some shortest path (hence a simple path) v → · · · → v′′

from v to the subset of the vertices of G that had been copied to G′. This path ends at a
vertex v′′ which may or may not be equal to v′. If v′′ ̸= v′, then we have a simple path
v′ → v → · · · → v′′, which we copy to G′; otherwise we have a simple cycle, which we copy
to G′. Note that, in both cases, all intermediate vertices in the simple path or simple cycle
that we copy only occur in the edges of the path or cycle (as they had not been previously
copied to G′). Further, G′ clearly remains strongly connected after this addition.

• Third, once all vertices of G have been copied to G′, take each edge of G that has not been
copied to G′ (including all self-loops), and copy it to G′ (as a simple path of length 1).
These additions preserve the strong connectedness of G′.

At the end of this process, G′ is a copy of G.
Now, to show the result, take the graph G, consider how we can construct it according

to the above process, and distinguish three cases:

• If the process stopped at the end of the first step, then G is a simple cycle (case 1 of the
statement).

• If the process stopped after performing a copy in the second step, then considering the last
simple path or simple cycle that we added, then it satisfies the conditions and its removal
from G gives a graph which is still strongly connected (case 2 or case 3 of the statement).

• If the process stopped after performing a copy in the third step, then considering the last
edge that we added, then it is a simple path of length 1 and its removal from G gives a
graph which is still strongly connected (case 3 of the statement).

This concludes the proof.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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