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Supporting Descendants in SIMD-Accelerated JSONPath

Abstract
Harnessing the power of SIMD can bring tremen-

dous performance gains in data processing. In querying
streamed JSON data, the state of the art leverages SIMD
to fast forward significant portions of the document. How-
ever, it does not provide support for descendant, which
excludes many real-life queries and makes formulating
many others hard. In this work, we put descendant queries
in the focus: we consider the fragment of JSONPath that
supports child, descendant, and labels. We propose a
modular approach based on novel depth-stack automata
that process a stream of events produced by a state-driven
classifier, allowing fast forwarding parts of the input doc-
ument irrelevant at the current stage of the computation.
We implement our solution in Rust and compare it with
the state of the art by considering semantically equivalent
queries formulated with and without descendant. The
experiments confirm that our approach allows supporting
descendant not only without sacrificing performance, but
actually with impressive gains in many cases.

Do not forget to mention JSON Pointer

1. Introduction
JSON is the format of choice for both modern web com-
munication and large datasets. Due to its prevalence, all
modern programming frameworks provide some facil-
ity for JSON processing. While the technology is rela-
tively mature, substantial performance gains can be still
achieved by exploiting the Single Instruction, Multiple
Data (SIMD) capabilities of modern commodity proces-
sors [18, 21, 22]. Langdale and Lemire harnessed SIMD
instructions to parse JSON data, validate it and produce its
tree representation (the DOM, Document Object Model),
achieving impressive speed-ups over conventional parsers
[20]. While DOM allows us to query the document effi-
ciently, it is prohibitively costly for large datasets. Not
only does it take up massive amounts of RAM, but con-
structing it would also take most of the time of the query –
parsing can amount to up to 90% of time spent in such an
application, while the actual query only touches a small
portion of the input data [23]. When faced with terabytes
of data to query, the only feasible solution is a streaming
algorithm with minimal memory footprint.

1.1. State of the Art

General tools for querying streamed JSON data, such as
JsonSurfer [28] and jq [10], are slow: the throughput of

JsonSurfer oscillates around 200MB/s and jq is an order
of magnitude slower. Meanwhile, Langdale and Lemire’s
simdjson can parse gigabytes of data per second, provid-
ing access via a SAX-like on-demand API [26]. Jiang and
Zhao’s recent JSONSki [19] shows that certain queries
can be evaluated even faster, surpassing the through-
put of simdjson thanks to clever SIMD-accelerated fast-
forwarding through irrelevant fragments of the stream.

JSONSki supports a useful but limited subset of the
popular JSONPath query language [15]. It has no sup-
port for descendant selectors, and their wildcard selector
implements only a part of the JSONPath specification,
stepping into every entry of an array, but not into ev-
ery field of an object. Importantly, JSONSki relies on
knowing whether a selector acts on objects or lists, which
means that there is no easy way to add support for either
descendant or idiomatic wildcard.

1.2. Our Contribution

We present an engine supporting JSONPath queries with
labels, child, and descendant, that does not rely on ad-
vance knowledge of types of values, and thus presents no
fundamental barriers for implementing wildcards. These
selectors allow reaching deep down the document with-
out specifying the full path, and accessing elements at
multiple depths with a single query. Tasks like fetching
all values associated with a given field in the document
become very easy, as they can be succinctly represented
with a descendant query. As an example, one could scrape
all url property values from a document without knowing
anything about the paths leading to them, whereas without
descendants the user would need to both know the depth
of the property, and without full wildcard support also
specify all labels on the path, leading to an explosion of
possibilities.

We propose a modular approach to evaluating such
queries based on novel depth-stack automata that process
a stream of events produced by a state-driven classifier.

Abstract automaton execution. The classifier con-
sumes the raw JSON stream and produces events asso-
ciated with symbols meaningful for the query, such as
structural symbols and relevant labels. Every step of the
automaton is costly, but the classifier generates only the
necessary events, allowing the automaton to skip over
most of the raw input stream. This modular architecture
allows one to compare different classifiers and different
automata models. It also provides a general abstraction
separating fast branchless stream processing from the



heavily branching code implementing the logic.

Sparse stack representation. In the described model,
child-descendent queries can be easily executed by a push-
down automaton, but using the stack is potentially costly.
Depth-register automata [5] are stackless, but they cannot
handle all queries mixing child and descendant. Aiming
to get the best of both worlds, we propose depth-stack
automata which offer a flexible sparse representation of
the stack, allowing to keep its depth to a bare minimum.

State-driven classifier. Because the automaton cares
about different events in different states, additional sav-
ings can be made by switching the classifier depending
on the current needs of the automaton. This way we avoid
classifying irrelevant symbols and generate fewer events.
The idea is captured in our multi-classifier pipeline which
allows switching dynamically between classifiers, based
on the feedback from the automaton. In principle, there
is an optimal classifier for each state of the automaton,
but the cost of switching often exceeds the gain. This is
why we do not switch whenever a state change occurs,
but only when the expected benefits justify it.

Implementation and Experiments. We implemented
our solution in Rust. The resulting tool, dubbed SIMD-
Path (name changed due to anonymity requirements),
is available online [4]. In a series of experiments we
compare SIMDPath with the state of the art by consider-
ing semantically equivalent queries formulated with and
without descendant. The experiments confirm that our
approach allows supporting descendant not only with-
out sacrificing performance, but actually with impressive
gains in many cases.

1.3. Outline

2. Background
JSON is a serialization format for JavaScript objects. A
JSON document J is one of the following:
• an atomic value: a string, a number, or one of the special

values true, false, null;
• an array of the form

[
J1, J2, . . . , Jn

]
where

J1,J2, . . . ,Jn are JSON documents;
• an object of the form

{
ℓ1 : J1, ℓ2 : J2, . . . , ℓn : Jn

}
where

here J1,J2, . . . ,Jn are JSON documents and ℓ1, ℓ2, . . . , ℓn
are strings (called property names or labels).

We call J1,J2, . . . ,Jn direct subdocuments of J. A string is
a sequence of zero or more Unicode characters, wrapped
in double quotes, using backslash escapes. For instance,
{"a":"{\"b\":2022}"} is an object with a single prop-
erty a whose value is the string {"b":2022}. The es-
caping mechanism poses additional challanges for rapid
processing of JSON documents.

We consider a fragment of JSONPath using selectors
of the forms $, .ℓ, .∗, and ..ℓ; that is, path expressions are

given by the grammar

e ::= $ | e.ℓ | e.∗ | e..ℓ

where ℓ is a property name.
TODO: Can we use .∗ everywhere instead of [∗]?
We apply the node semantics, defined as follows. When

evaluated over a JSON document J, an expression e re-
turns a (possibly empty) sequence e(J) of JSON docu-
ments. The expression $ returns J: $(J) = J. Suppose

e(J) = J1,J2, . . . ,Jn

with n ≥ 0. Then, for s = .ℓ or s = .∗ or s = ..ℓ,

es(J) = s(J1) , s(J2) , . . . , s(Jn) ,

where s(Ji) is the sequence of JSON documents selected
by the selector s in Ji: .ℓ(Ji) is the value of property
ℓ in Ji or the empty sequence if Ji is an array or does
not have property ℓ; . ∗ (Ji) is the sequence of all direct
subdocuments of Ji; and ..ℓ(Ji) is the sequence of values
of property ℓ in all objects in Ji, including Ji itself; that is,

..ℓ(Ji) = .ℓ(Ji) , ..ℓ(J1
i ) , ..ℓ(J

2
i ) , . . . , ..ℓ(J

ni
i ) ,

where J1
i ,J

2
i , . . . ,J

ni
i are the direct subdocuments of Ji.

There exists an alternative path semantics, in which a
JSONPath query selects a set of marked paths in the tree.
Intuitively, a marked path is a pair consisting of a path
to a node that satisfies the query under node semantics,
with an additional function that maps each selector in the
query to a node on the path. The difference from node
semantics comes from the marking: each selected node
yields exactly one path, but it may yield multiple marked
paths because the selectors in the query may be mapped
to the path in multiple ways.

We posit that path semantics is undesirable. The rea-
sons are two-fold. First, cluttering results with duplicated
values is usually not what the user wants. Second, under
path semantics the result set might grow exponentially
large in the length of the query. The original implemen-
tation by Gössner [15] uses path semantics. It is unclear
whether it was a conscious choice or simply a byproduct
of the way the author implemented the engine at the time.
Using the JSONPath comparison project [7] we found
that most existing implementations of JSONPath use path
semantics: out of 44 tested implementations, 34 of them
use path semantics, while only 6 use node semantics (4
were errors). See 7 for details. PostgreSQL’s implementa-
tion of JSONPath also uses path semantics, which makes
it possible to construct simple antagonistic queries against
the database. The current JSONPath specification draft
[16] does not address this issue directly, but the semantics
there is defined using node result sets. An implementation
may still present output in a different way, so path seman-
tics is not strictly disallowed. From this point onward we
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Figure 1: An overview of simdpath

consider only node semantics, as not only the more useful
and conforming to the specification draft, but also easier
to implement in our streaming model, which inherently
demands a linear pass over the document.

3. Query execution

Our query execution algorithm has two phases. In the first
phase, detailed in Section 3.1 below, the query is compiled
into a deterministic query automaton recognizing access
paths leading to subdocuments selected by the query. In
the second phase, the query automaton is simulated over
the streamed document. The simulation uses a concise
stack representation (Section 3.2) as well as four skip-
ping techniques (Section 3.3) allowing it to fast forward
through irrelevant fragments of the stream. The implemen-
tation (Section 3.4) abstracts away access to the stream as
an iterator, which can be seen as a SIMD-enhanced lexer,
capable of filtering out irrelevant tokens on demand. The
iterator is the working horse of simdpath; we discuss it
in detail in Section 4.

3.1. Constructing query automata

A JSONPath query can be naturally represented as a non-
deterministic finite automaton (NFA) that runs on a word
formed by the sequence of labels on a path from the root
to a node in the document tree (array entries are given an
artificial label, different from property names). To ease
the simulation, we turn it into a minimal deterministic
finite automaton (DFA). Theoretically, the size of a DFA
could be exponential in the size of the query. This indeed
happens for some queries with wildcard, but for wildcard-
free queries one can easily construct a (minimal) DFA of
the same size as the original NFA.,

Descendant-only queries. We begin with the simpler
case of queries with descendant selectors only. Let us
consider a query $..ℓ1..ℓ2 · · · ..ℓn. In plain English, this
query asks for an ℓn node that is located in a subtree of
an ℓn−1 node that is located in a subtree . . . , ultimately
located in a subtree of an ℓ1 node. An NFA for such
a query has a very regular form, illustrated in Figure 2
(top). It consists of a chain of states corresponding to the
selectors of the query. The automaton can always loop
at the current selector ..ℓi, but when it sees the label ℓi, it
may transition to the next selector ..ℓi+1. From the last
selector ..ℓn the automaton moves to the accepting state.
In order to turn the NFA into a DFA we simply force the
automaton to move on to ..ℓi+1 as soon as it encounters
the label ..ℓi; see Figure 2 (bottom) for an illustration.
Note that we crucially rely on the node semantics. The
following greedy match property is key: once we find ℓi
on a path in the tree, we can assume that the correspond-

Figure 2: NFA (top) and minimal DFA (bottom) recognising
paths matching query $..x..y..x .

ing selector ..ℓi matches there, and start looking for ℓi+1.
Under the path semantics, we would have to consider each
subsequent ℓi too, as they would yield different markings
for the resulting path. When looking at a query as an
automaton, node semantics asks “Is this path accepted?”,
while path semantics asks “How many different accepting
runs does this path induce?”. Only the former allows us
to effectively determinise and minimise the NFA.

Allowing child selectors. Child selectors cause the
query NFA to effectively have two types of states: re-
cursive, which correspond to descendant selectors in the
query, and direct, which correspond to child selectors;
see Figure 3 (top). The greedy match property applies
here in a generalised fashion: once we reach a given
recursive state, we can forget about all states before it.
This divides the automaton into segments, where only one
segment needs to be simulated at a time. Moreover, deter-
minisation of such an automaton causes no explosion of
states – only transitions become more complicated. Every
segment is translated to a same-size strongly connected
component in the minimal DFA: essentially, the control
table from the KMP pattern-matching algorithm for the
pattern corresponding to the block of consecutive child
selectors. This gives rise to two kinds of transitions: those
that consume a label allowing to match a non-empty prefix
of the block, and fallback transitions leading to the initial
state of the component (corresponding to a recursive state
of the NFA); see Figure 3 (bottom).

Allowing wildcard selectors. For queries with wild-
cards the NFA is still very simple: the only difference is
that transitions from direct states corresponding to wild-
card selectors are over an arbitrary label. See Figure 4
(top). The DFA, however, may be much more compli-
cated; see Figure 4 (bottom). It is still a chain of strongly
connected components corresponding to the segments of
the NFA, and each state has a few transitions over concrete
labels plus a single fallback transition over the remain-
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Figure 3: NFA (top) and minimal DFA (bottom) recognising
paths matching query $..x..a.b.a.b.c..y.a. Differ-
ent shades of grey represent segments in the NFA and cor-
responding strongly connected components in the DFA.

ing labels that loops or leads to the initial state of the
component (except for the first component where it loops
or leads to the trash state). The difference is that each
strongly connected component may now be exponentially
larger. Indeed, a classical example of exponential blowup
can be now reconstructed: the query $..a.∗ .∗ . · · · .∗ se-
lecting nodes whose ancestor n levels up has label a.

Figure 4: NFA (top) and minimal DFA (bottom) recognising
paths matching query ....

3.2. Simulating query automata on streamed trees

With the determinized query automaton at hand, executing
a query boils down to simulating this automaton on all
paths in the tree. The tree, however, is streamed. For
now, let us take a high-level view and treat the streamed
document as a sequence of tokens: structural characters
(Table 1), labels, and atomic values. In a pass over the
streamed document we can simulate a DFA easily, as long
as we use a stack:
• whenever an opening structural character (‘[’ or ‘{’)

is encountered, the state of the simulated automaton is
pushed to the stack;

• each encountered label triggers a transition of the sim-
ulated automaton and, if the new state is accepting, an
answer is reported;

• a closing structural character (‘]’ or ‘}’) pops the stack
and restores the state to what it was before visiting the
subtree.

In this work, however, we aim at minimising the use of
the stack, the hypothesis being that such code should be
more performant when paired with SIMD processing.

Querying streamed trees in a stackless manner was
investigated in [5], where the authors characterise the
kinds of queries that can be effectively executed on depth-
register automata, which are finite automata with a con-
stant number of depth registers and access to the current
depth in the tree. The only operations allowed on regis-
ters are storing the current depth and comparing whether
the stored value is less than, equal to, or greater than the
current depth. It is easy to see that such automata can
be effectively implemented, as the current depth can be
tracked in a single integer variable that is incremented on
every occurrence of a opening character and decremented
on every occurrence of a closing character.

Automata resulting from descendent-only queries can
be simulated stacklessly in the depth-register model. A
stackless algorithm for the query $..ℓ1..ℓ2 . . . ..ℓn uses
depth registers δ1, . . . ,δn−1 and states 1,2, . . . ,n+1. We
start in state 1 and report an answer whenever in state
n+1. When in state i, there are two kids of events that
trigger a transition:
• if the current depth falls to the value in register δi−1,

move to state i−1 (not applicable when i = 1);
• if label ℓi is found, set δi to the current depth and move

to state i+1 (not applicable when i = n+1).
For automata resulting from queries mixing descendant

and child selectors, the depth-register model is too weak
[5]. Intuitively, this is due to the non-local nature of such
queries: two children of the same node can be arbitrarily
far away from each other in the input JSON string. For
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instance, for the query $..ℓ1.ℓ2 the automaton would have
to remember every occurrence of label ℓ1 on the current
path from the root in order to be able to check all its
children, because the children of shallower ℓ1 nodes might
occur both before and after the children of deeper ℓ1
nodes. While all DFAs can be simulated using a stack, this
becomes costly when the stack gets large. As a remedy,
we generalize the depth-register model by employing a
depth-stack. Rather than just symbols from a fixed finite
alphabet, a depth-stack stores stack frames, which consist
of a symbol and a depth. By replacing the registers in a
depth-register automaton with a depth-stack we obtain a
depth-stack automaton. The automaton can pop a frame,
push a frame with the current depth, and compare the
depth in the top frame with the current depth.

The adventage of the depth-stack over the classical
stack is conciseness. In the ordinary stack-based simula-
tion the height of the stack is tied to the depth of the tree.
In the depth-stack model we keep track of the depth using
the counter and the stack is only used to record when the
state of the simulated DFA changes:
• whenever a label is about to trigger a state change, the

current state and depth are pushed to the depth-stack;
• whenever the current depth drops to the value in the

topmost frame, the frame is popped and the current
state is reverted to the one in the frame.

For a child-free query with n selectors this results in O(n)
memory usage, and the at most n frames on the stack
correspond directly to the n registers from the stackless
algorithm. For a query with child selectors the stack can
grow up to the depth of the JSON tree, but for most real-
life data this is rare: it requires documents where nodes
with the same label are nested in itself, and the query asks
for a child of a node with such a label (see query A1 in
Section 5). In the implementation we represent the depth-
stack using a special Rust structure SmallVec. This puts
our depth-stack on the actual stack of the executing thread
as long as it is relatively shallow (less than 128 elements,
bounded by 512 bytes). In the rare cases when it grows
larger than that, it is moved to the heap.

Apart from the depth-stack, the simulation algorithm
stores the query automaton, whose size is negligible for
practically useful queries. The overall memory footprint
is linear in the depth of the document. Time complexity
is obviously linear in the size of the input data.

3.3. Skipping

[TODO: say what’s new and what’s from JSONSki]
While the algorithm described in Section 3.2 dutifully
steps through every element of the document, the key
insight from [19] is that one can skip fragments of the
document that are known not to contain query matches.
Of course, we cannot really jump over fragments of the

stream, but we can fast-forward through them using SIMD
processing. Below we discuss in the abstract the four
types of skipping used in our query engine. Their SIMD
implementation is explained Section 4.

Skipping leaves. We call a state internal if it has no
transitions to accepting states. When the simulated DFA
is in an internal state, it makes no sense to visit leaves of
the tree because the automaton needs to descend at least
two levels to accept. That is, when going through the
children of some node v we would like to skip all leaves
ahead of us and jump straight to the next child that has
some descendants. This means simply that we are inter-
ested in the next opening character, except that we should
also be mindful of closing characters, because maybe all
the remaining siblings are leaves in which case the next
opening character would be already outside of the scope
of the current subtree. Overall, when skipping leaves,
we will be tracking structural characters ‘{’, ‘}’, ‘[’, ‘]’,
fast-forwarding between their successive occurrences. In
order to simulate the DFA, we will also need the label
before each ‘{’, but we can get it by backtracking. When
not skipping leaves, we will have to pay attention also to
the remaining structural characters: commas and colons.

Skipping children. When reading the label of the cur-
rent node v moves the simulated DFA to the trash state,
it makes no sense to visit the children of v. Instead, we
would like to jump straight to the closing character mark-
ing the end of the whole subtree. Importantly, we know if
we are skipping over an object or an array, so we know
whether it is going to be ‘}’ or ‘]’.

Skipping siblings. We call a state unitary if it has a
single transition over a concrete label and its fallback
transition leads to the trash state. (Such states correspond
to non-wildcard selectors in the query before the first
descendant selector.) Suppose that upon reading the label
of the current node v the simulated DFA enters a unitary
state with a transition over label ℓ. As soon as we discover
a child v′ of v with label ℓ, it makes no sense to visit the
remaining siblings of v′, because labels do not repeat
among siblings. (This kind of skipping is applicable only
in objects.) As in the previous case, we would like to
jump straight to the closing character marking the end of
the whole subtree, and we know exactly which of the two
closing characters it is going to be.

Skipping to a label. We call a state waiting if it has
exactly one transition over a concrete label ℓ and its fall-
back transition is looping. Such a state corresponds to
descendent selectors ..ℓ. When the simulated DFA is in
such a state, it would make sense to jump directly to the
next descendent of the current node that has label ℓ. This
is hard in general, as it requires monitoring the depth and
the label, but it becomes straightforward if the waiting
state is the initial state of the automaton (this is the case
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for queries that begin with $..ℓ). Then, the current node
is the root and we can safely jump to the next occurrence
of label ℓ.

3.4. Main algorithm

The pseudocode of the main algorithm, shown below in a
Python-like syntax for brevity, combines the depth-stack
based algorithm with skipping leaves, children, and sib-
lings. It uses an iterator that abstracts away all access to
the stream. The iterator allows advancing to the next rele-
vant structural character with method next() and peek-
ing it without advancing with method peek(). Whenever
an opening character is found, the method get_label()

is used to get the label corresponding to the subdocument.
The iterator does that simply by backtracking through
whitespace characters (and possibly a colon) to the label
and returns it. If instead it finds a comma or an opening
character, it means that the encompassing element is an
array and there is no label. In that case, an artificial label
is returned, falling under the fallback transition of the
simulated automaton.

1 state = automaton.init_state()

2 stack = init_stack()

3 while event = iterator.next():

4 match event:

5 case Opening(c):

6 label = iterator.get_label()

7 target = state.transition(label)

8 if target.is_rejecting():

9 iterator.skip_children(c)

10 continue
11 if target != state:

12 stack.push(state, depth, c)

13 state = target

14 depth = depth + 1

15 if state.is_accepting():

16 report_match()

17 iterator.toggle(state, c)

18 if c == '[':

19 try_match_first_item()

20 case Closing(c):

21 depth = depth - 1

22 prev = stack.top()

23 if depth == prev.depth:

24 state = prev.state

25 stack.pop()

26 if state.is_unitary():

27 iterator.skip_siblings()

28 continue
29 iterator.toggle(state, prev.c)

30 else:
31 iterator.toggle(state, '{')

32 case Colon:

33 if iterator.peek() == Opening(_):

34 continue
35 label = iterator.get_label()

36 target = state.transition(label)

37 if target.is_accepting():

38 report_match()

39 if state.is_unitary():

40 iterator.skip_siblings()

41 case Comma:

42 if iterator.peek() != Opening(_):

43 report_match()

By default, the iterator returns only opening and clos-
ing characters, which amounts to skipping leaves. The
method toggle() checks if the automaton can accept in
a single step from the current state in the current type of
element (object or list). If so, it extends the set of struc-
tural characters to be iterated over: it adds commas if the
current element is a list and colons if it is an object. (It
would be possible to use commas in objects as well, but
we found the current solution more efficient.) We make
sure that only leaves are processed in cases Colon and
Comma by checking if the next structural character is not
an Opening character. If it is, the current node is not a
leaf and it is handled in the main two cases. An additional
corner case is the first item of an array, which will not be
caught in the Comma case nor in the Opening case if it is
leaf. We handle it using try_match_first_item() in
the Open('[') case for the encompassing array, which
reports an answer if: the array is non-empty, the next
structural character is not opening, and the target of the
fallback transition is accepting.

Skipping children and siblings is handled by call-
ing the respective methods, skip_children() and
skip_sibling() of the iterator. Skipping to label is
implemented outside of the above algorithm: if the query
starts from a descendent selector ..ℓ, the engine finds the
first occurrence of ℓ in the stream using the highly opti-
mized memmem function from the memchr crate [13], and
runs the described algorithm from there. When the whole
subdocument associated with the first occurence of ℓ is
processed, the external loop identifies the next occurrence
of ℓ and runs the algorithm again, etc.

3.5. Automaton-classifier interaction [to cannibalize]

skip_children. When that happens, we use our classi-
fier API to stop structural classification and trigger the
depth classifier to fast-forward through the object or array.
We then stop the depth classifier and resume the struc-
tural one, going one step backwards in the automaton to a
non-rejecting state.
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Skipping to label. This could be seen as an additional
ultralight classifier, utilising SIMD instructions to match
bytes of the label. This approach is correct, as for such
queries we do not care about the depth of the first label,
and we can consider each such subtree separately. Note
that this is not true for child selectors, as we want the
depth to be exactly 1, or for nested descendants, which
have to be contained within the subtree selected by the
preceding selectors. An integration between SIMD depth-
checking and label-matching would prove invaluable for
those cases.

4. Vectorised classification
The core of our engine is a SIMD pipeline (encapsulated
in the iterator) that quickly locates relevant characters and
fast forwards through irrelevant fragments of the stream.

The main ingredient of the pipeline is the structural
classifier that recognizes JSON structural characters (see
Table 1) and fast forwards through whitespaces, labels,
and atomic values. Its task is not straightforward, because
brackets, braces, colons, and commas located within
strings do not play any structural role and should be ig-
nored. Moreover, it is not enough to ignore characters
located between matching double quotes, because not all
double quotes delimit strings – some of them may be
escaped with backslashes.

We we also use a lightweight depth classifier, that al-
lows us to fast forward through irrelevant subtrees, known
not to contain query matches.

In what follows we first present a general method for
raw classification based on the shuffle instruction that
can be of use for fast parsing of other document formats.
We then describe an algorithm dealing with escaped and
quoted sequences, largely analogous to Langdale and
Lemire’s solution in simdjson [20]. Next, we explain
how block boundaries and multiple blocks are handled.
Finally, we briefly discuss the depth classifier and explain
how the two classifiers are orchestrated.

4.1. Raw classification

Our algorithm has to solve a special case of a more general
classification problem, asking to classify an input vector
of n bytes into k buckets. It can be stated formally as:

Problem 1 (Classification). Fix a classification func-
tion f : {0x00,0x01, . . . ,0xff} → {0,1, . . . ,k − 1}.
Given a vector v of n bytes compute the vector
[ f (v0), f (v1), . . . , f (vn−1)].

We will show that binary classification (k = 2) can be
efficiently solved using few SIMD instructions, assuming
some constant vectors are precomputed. When very few
values are mapped to 1, a simple fast solution is to com-
pare (vectorially) with each value separately, and aggre-
gate the answers using bitwise OR. For [TODO] values

this takes only [TODO] CPU cycles. When more values
are mapped to 1, it pays off to do something smarter.

We will use the shuffle operation, which essentially
allows one to compose functions represented as vectors,
except that the values of the inner vector are trimmed to
the lower nibbles (4-bit parts). For 128-bit vectors a and
b, the result of shuffle_epi8(a, b) is a 128-bit vector
with a[b[i] & 0x0F] at postion i, for all 0 ≤ i < 16
(assuming that the upper nibbles of b are zeroed).1 For in-
stance, if b = [15,14, . . . ,0], then shuffle_epi8(a, b)

is the reverse of a.
While the original purpose of shuffle was to reorder

entries of vector a based on vector b, as in the example
above, one can also think of it as a way to perform parallel
lookup in a table a at the positions indicated by vector
b. We can use it to quickly classify a vector b of bytes
into at most 16 buckets depending on their lower nibble.
We can do the same for the upper nibbles (by simply
shifting all bytes right by 4). However, not every classi-
fication function over bytes can be easily factorized into
two classification functions over nibbles. In what follows
we describe two cases when this is possible. In both cases
we construct two lookup tables such that the results of
the lookups can be easily combined to provide the final
classification. We also describe a working solution for
the general case. [TODO: How does this compare to
SIMDjson? ]

Fix a binary classification function f . We identify each
byte with a pair of an upper and lower nibble; e.g. 0x3a
is identified with ⟨3,a⟩. We let Nib := {0,1, . . . ,e,f}.

Definition 1 (Acceptance Set). For a given nibble u∈Nib
its acceptance set is the set of all the nibbles l that cause
⟨u, l⟩ to be accepted, i.e.

{l ∈ Nib | f (⟨u, l⟩) = 1}.

Define low(u) : Nib →P(Nib) as a function assigning to
each nibble u its acceptance set.

Definition 2 (Acceptance Group). An acceptance group
is a defined by a maximal set of upper nibbles that
have the same acceptance sets. For a nibble u let
Uu = {u′ ∈ Nib | low(u′) = low(u)}. The set G of all ac-
ceptance groups is defined as

G = {⟨Uu, low(u)⟩ |u ∈ Nib}.

Note that |G| ≤ |Nib|= 16.

Definition 3 (Overlapping groups). Two groups
⟨U1,L1⟩,⟨U2,L2⟩ ∈ G are overlapping if U1 ̸= U2 and
L1 ∩L2 ̸= /0.

1Zeroing the upper nibbles is important because the exact semantics
of shuffle make bits there meaningful – if the most significant bit is
lit the result is mapped to zero. For all our purposes we want the upper
nibbles to be zeroed.
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Table 1: JSON Structural Characters

Character { } [ ] : ,

UTF 0x7b 0x7d 0x5b 0x5d 0x3a 0x2c

As an example, consider a classifying function that as-
signs 1 to bytes 0xa1,0xa2,0xb1,0xb2,0xc2 and 0 to
the remaining bytes. Then:

low(a) = low(b) = {1,2}, low(c) = {2},

G = {⟨{a,b},{1,2}⟩,⟨{c},{2}⟩},
and the two groups in G are overlapping, since they share
the element 2.

Depending on the properties of the group set G we can
distinguish three cases of increasing complexity for the
classification problem.

Non-overlapping groups. If G contains no overlapping
groups, then the simplest solution is to map lower and up-
per nibbles from a single group to a unique value and com-
pare the results with cmpeq. Take an arbitrary enumer-
ation ⟨U1,L1⟩, . . . ,⟨U|G|,L|G|⟩ of groups in G. Then con-
struct an upper table as a vector utab such that utab[x] = i
if x ∈ Ui, and utab[x] = 254 if there is no such i. Anal-
ogously construct a lower table ltab as ltab[x] = i if
x ∈ Li, and ltab[x] = 255 if there is no such i. Naturally,
|G| < 254. Then the required classification vector b is
obtained with:

let usrc = shiftright_epi8(src, 4);

let llookup = shuffle_epi8(ltab, src);

let ulookup = shuffle_epi8(utab, usrc);

let b = cmpeq_epi8(llookup, ulookup);

x86 SIMD does not have the shiftright_epi8 instruc-
tion, but it can be simulated with two instructions: first,
16-bit right shift by 4, then zero the upper nibbles with a
precomputed mask. Both these instructions have latency
1. The total cost of the entire lookup is thus five SIMD
operations, each of which has latency 1. The two shuffles
can be effectively locally parallelised by the CPU, so the
expected time of execution is four cycles.

As it happens, the non-overlapping case is sufficient for
our JSON structural classifier. JSON structural characters
are shown in Table 1, and the groups are

{⟨{5,7},{b,d}⟩,⟨{2},{c}⟩,⟨{3},{a}⟩},
and they are non-overlapping. Consequently, the lower
and upper lookup table used in our classifier are

utab = [0xfe,0xfe,0x02,0x03,0xfe,0x01,0xfe,0x01,

0xfe,0xfe,0xfe,0xfe,0xfe,0xfe,0xfe,0xfe] ,

ltab = [0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0xff,0xff,0x03,0x01,0x02,0x01,0xff,0xff] .

NOTE: Is it worth to say how we toggle the commas
and colons precisely, showing the masks used?

Few groups. Another case that can be efficiently solved
is when |G| ≤ 8. The idea is to assign a unique index
from 0 to 7 to each group and then let the upper nibble
lookup zero the bit at the index corresponding to the
unique group containing the nibble, and the lower nibble
lookup set bits at all indices corresponding to groups
whose acceptance set contains the nibble. That is, we
take an arbitrary enumeration ⟨U1,L1⟩, . . . ,⟨U|G|,L|G|⟩ of
groups in G. We construct the upper table utab such that
utab[x] = 28 − 1− 2i−1 if x ∈ Ui, and utab[x] = 0 if no
such i exists. The lower table is defined as

ltab[x] = 2i1−1 +2i2−1 + . . .+2ic−1,

where x ∈ Li1 , x ∈ Li2 , . . . , x ∈ Lic . Then, for every byte
b = ⟨u, l⟩, f (b) = 1 if and only if the bitwise OR of
utab[u] and ltab[l] is 28 − 1. The classification vector
b is obtained with just one more operation than in the
non-overlapping case (increasing the expected time to
five CPU cycles):

let usrc = srli_epi8(src, 4);

let llookup = shuffle_epi8(ltab, src);

let ulookup = shuffle_epi8(utab, usrc);

let lookup = or(llookup, ulookup);

let b = cmpeq_epi8(lookup, ALL_ONES);

General case. We have not found an elegant solution to
the general case for 8 < |G| ≤ 16. A working approach
is to apply the algorithm for the small case twice. First
partition the set G into G1,G2 such that |G1| ≤ 8 and
|G2| ≤ 8. Then classify the bytes according to G1 and G2,
possibly with local parallelism. In the end, we take the
OR of both classifications to obtain a classification for G.

let usrc = srli_epi8(src, 4);

let llookup1 = shuffle_epi8(ltab1, src);

let ulookup1 = shuffle_epi8(utab1, usrc);

let lookup1 = or(llookup1, ulookup1);

let llookup2 = shuffle_epi8(ltab2, src);

let ulookup2 = shuffle_epi8(utab2, usrc);

let lookup2 = or(llookup2, ulookup2);

let lookup = or(lookup1, lookup2);

let b = cmpeq_epi8(lookup, ALL_ONES);

Assuming maximal local parallelism this takes six CPU
cycles, since the two lookups are independent.

4.2. Recognising quoted sequences

The next step is ignoring characters recognised as struc-
tural by the lookup, but located inside JSON strings. To
that end, we mark all double quote characters with a sim-
ple cmpeq. However, we need to also account for escape
sequences. A double quote is escaped if and only if it is
preceded by a sequence of backslashes of odd length:
• JSON string "x\"" contains a single escaped double

quote;
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0x7b 0x22 0x5c 0x22 0x3a 0x5b 0x22 0x7a 0x22 0x3a 0x32 0x7d 0x5d 0x7d

{ " \ " : [ { { " z : : 7 } ] }

0x07 0x02 0x06 0x02 0x03 0x05 0x07 0x02 0x07 0x02 0x03 0x03 0x03 0x07 0x05 0x07

0x02 0xff 0x02 0xff 0x01 0x02 0x02 0xff 0x01 0xff 0x01 0xff 0xff 0x02 0x02 0x02

{

0x7b

: [ {

0x7b

0x02 0x00 0x00 0x00 0x01 0x02 0x02 0x00 0x02 0x00 0x01 0x01 0x01 0x02 0x02 0x02

" [: "

0x7d 0x5d 0x7d

}]}

0x020x020x02

0x07 0x03

0xff 0x00 0x00 0x00 0xff 0xff 0xff 0x00 0x00 0x00 0xff 0x00 0x00 0xff 0xff 0xff

srli

cmpeq

shuffle

shuffle

ltab

utab

0x22

Figure 5: JSON document classified using the structural classifier’s ltab and utab lookup tables.

• JSON string "x\\" contains a single escaped backslash;
none of the double quotes are escaped.
We use the same solution as simdjson [20]. First, we

mark all backslash and quote characters with a cmpeq.
Next, we move out of the SIMD world and obtain two
masks in regular registers, quotes and slashes. The key
idea now is that we can mark starts of backslash sequences
and use add-carry propagation to find their ends. To find
starts, we ask for backslashes not preceded by other back-
slashes, which is slashes AND NOT (slashes << 1). We
partition the starts into those occurring at odd positions
in the vector and those occurring at even positions in the
vector, using a constant mask2.

Then we arithmetically add slashes to each of these
masks. The starting bit triggers a carry, which continues
through the sequence of consecutive backslashes. The
result is a single lit bit one place past the end of the
sequence. We can now partition ends based on their posi-
tions as well. Escaped characters will be the ends of starts
on even positions that occur at odd positions, and ends
of starts on odd positions that occur at even positions. It
remains to exclude those escaped characters from quotes.

Having recognised unescaped double quote characters
we now want to exclude all structural characters that are
quoted. Observe that if we take the vector where bits are
lit at unescaped double quote characters, then a prefix-
xor computed on it will mark with lit bits exactly those
characters that are quoted. Prefix-xor can be computed
efficiently as the result of carry-less multiplication by a
vector with all bits lit [20]. Thus, it suffices to load the

2A 64-bit mask for even positions is 0x5555555555555555, while
for odd it is 0xAAAAAAAAAAAAAAAA.

vector into a SIMD vector, perform the clmul operation,
and then extract the information back to a mask.

4.3. Block boundaries

There is an issue with the above algorithm stemming from
the nature of block-by-block processing. If the boundary
between two blocks falls between a pair of unescaped
double quote characters, so that the opening double quote
is in the first block while the closing is in the second, then
we will misclassify all bytes in the second block. We
might also get incorrect results if the block boundary falls
in the middle of a sequence of consecutive backslashes.

There are two ways of dealing with this: introducing
a state, or using overlapping windows. Overlapping win-
dows would significantly degrade the classifier’s perfor-
mance, so we choose to carry a state. To handle escaping
correctly, we need a single bit of information: whether the
previous block’s last character was an unescaped back-
slash. It is then used in two places: if the first character in
a block is a backslash, but the bit is lit, then it is not a start
of a sequence; and if the first character is not a backslash,
but the bit is lit, then it is an escaped character. We avoid
branching by converting the bit into a mask of length in
bits equal to the block length in bytes and combining it
with the rest of the information using bitwise operations:

let starts = slashes & (!slashes << 1)

& !prev_slash_mask;

...

let escaped = (ends_of_even_starts & ODD)

| (ends_of_odd_starts & EVEN)

| prev_slash_mask;
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Another bit of state indicates whether the previous block
ended while still within quotes, which is equivalent to the
last bit extracted from the result of clmul being lit. We
can efficiently store both bits of information in a single
byte of storage.

4.4. Structural iterator

All the classification we have performed up to this point
was on a single block of data. To feed information to the
main algorithm we need an abstraction on top of a block
classifier that will give us a classifier for the entire input
stream.

We create a structure implementing the Rust’s
Iterator trait3, yielding items of an algebraic sum type
Structural with four variants:
• Closing – representing ’{’ or ’[’;
• Colon – representing ’:’;
• Comma – representing ’,’;
• Opening – representing ’}’ or ’]’.
Additionally, each item stores the index at which the
character occurred in the input.

The iterator operates on classified blocks of structural
characters, which contain a bitmask with all structural
characters marked as described in the sections above,
along with a reference to the original input block. The it-
erator begins by classifying the first block of input. Then,
when asked for the next structural character, it exam-
ines the current classified block and its bitmask. If it is
all-zeroes, then there are no structural characters in the
current block and we need to classify the next one. If it is
not, then we extract the position of the first lit bit by cal-
culating trailing zeroes of the mask and check the original
input block for the character located at that position. This
allows us to create the Structural item that is returned.
Additionally, we modify the stored bitmask by zeroing
the lit bit we just processed.

A crucial observation is that the Colon and Comma char-
acters are usually not needed for proper query execution.
They matter only at the end of the query, when atomic
values can be added to the result set from a label or by
extracting them from a list. Therefore, our structural clas-
sifier does not classify them by default. The main engine
can ask the classifier to turn one of those characters on –
this is done by XOR-ing the internal lookup table used for
shuffle with a special precomputed mask targeting the
nibbles of the colon (0x3a) or comma (0x2c) character.

We will later see that most of the time the query runner
does not care about colons and commas. The main engine
can ask the classifier to[...]

This provides the main implementation with a stream of
the relevant structural elements, while all other characters

3Iterator models a stream of elements with a single function next
returning the next element in the stream, or stating that there are no
more elements.

are efficiently skipped over. The SIMD pipeline calculat-
ing structural bitmasks is completely branchless, while
the outer loop of the iterator contains branching when we
compare the mask to zero, and then when we branch on
the input character to return a proper Structural value.

4.5. Depth classifier

The key insight from [19] is that objects (or lists) which
are known to not contain query matches can be skipped.
The JSONSki approach is to count braces (or brackets)
to find the closing tag. Generalising, we can maintain
the depth inside the subtree being skipped and ignore
everything other than opening and closing tags while
depth is above zero. We abstract it away as a separate
depth classfier that supports two operations:
• query the relative depth at the current position;
• fast-forward to the next occurrence of a closing tag.

To implement the depth classifier, we mark all opening
and closing tags using standard SIMD instructions and
produce two bitmasks for them. Advancing to the next
closing tag can be done with simple bitwise operations,
and we update the relative depth by counting bits lit in the
relevant chunk of the bitmask.

As an additional heuristic, we skip the entire block if
we can see at a glance that the depth there cannot go to
zero: this is the case when the number of closing tags
in the block is lower than the current depth. This makes
the algorithm much more efficient, especially on real-life
JSON documents.

@Mat: 2 vs 5 SIMD operations, so much faster. It pays
of to pay the price of switching the whole classifier.

General idea (intro? sec intro?): it makes sense to
switch classifiers to skip more symbols and to make the
classification itself cheaper. Sometimes the algorithm is
similar, and can just implement the switch by replacing
the lookup tables.

4.6. Multi-classifier pipeline

The nature of fast-forwarding is such that we need to be
able to trigger depth classification on-demand, pausing
the full structural classifier for the duration of the fast-
forward. When the object or array is skipped, we need
to resume structural classification. To facilitate this we
propose a robust multi-classifier pipeline available for
extension with different classifiers later on.

Our pipeline consists of the core classifier, the quote
classifier, which is responsible for creating the bitmasks
marking characters that are within quotes and should be
ignored. This classification is always required to main-
tain correctness. On top of that, we can run either the
structural or the depth classifier. To allow quick switch-
ing between them, they both expose stop and resume

methods. The stop returns an object that encapsulates
the state of the underlying quote classifier – all of its in-
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ternal structures and the last classified block along with
the index to which classification was performed. The
resume counterpart can take such an object, restore the
quote classifier, and begin the top-level depth or structural
classification. By leveraging Rust’s ownership system
we can easily pass the internal quote classifier structures
between components without copying (which would be
slow) or complicated memory management (which would
be error-prone and hard to modify).

While our implementation has only two classifiers in
the pipeline, one can easily add further specialised clas-
sifiers by simply providing them with appropriate stop
and resume methods. One can envision a progression
of more and more refined classifiers. Our depth classi-
fier allows to keep track of the depth to stay within an
element. This can be extended to a classifier that allows
to fast forward to the next occurrence of a label within
an object. Such a classifier could be leveraged to speed
up the execution of nested descendant selectors. Finally,
one could additionally demand staying at the same depth,
which would be useful in processing child states.

We believe that a flexible pipeline is an important en-
gineering milestone that can enable programmers to con-
struct SIMD solutions that are naturally composable and
easily modifiable. This increases the level of abstraction
on which we operate when designing SIMD accelerations,
while not sacrificing low-level control required to produce
very performant code.

5. Experiments
We performed a series of experiments comparing our en-
gine with existing solutions. Our main goals were three-
fold: estimate the overall overhead involved in supporting
descendants, showcase the benefits from working directly
with descendant queries, and identify improvement op-
portunities. The benchmark code and all data sets are
available online [4].

This should be rewritten, the narrative changed. Propo-
sitions We performed a series of experiments comparing
our engine with existing solutions. Our main goals were
three-fold: estimate the benefits from the new classifiers
methodology, showcase the benefits from working di-
rectly with descendant queries as opposed to semantically
equivalent descendant-free query, and identify improve-
ment opportunities. The benchmark code and all data sets
are available online [4].

5.1. Competitors

For the baseline we chose JsonSurfer [28], which works
in the streaming model and supports full JSONPath, but
does not apply any SIMD optimizations. We exclude
the very popular jq, which supports a much more expres-
sive variant of JSONPath, because it is much slower than
JsonSurfer (one order of magnitude slower on A0).

Table 2: Datasets used in experiments

Name Size [MB] Depth Verbosity
AST (A) 25.6 102 14.3
BestBuy (B) 1044.6 8 24.5
Crossref (C) 2029.0 9 24.4
GoogleMap (G) 1136.1 10 36.9
NSLP (N) 1210.2 10 13.8
OpenFood (O) 0.9 9 19.8
Twitter (T) 842.5 12 29.0
Twitter small (Ts) 0.7 11 50.6
Walmart (Wa) 995.4 5 96.9
Wikimedia (Wi) 1099.0 13 18.7

Our main point of reference is JSONSki [19], to the
best of our knowledge the only JSONPath engine using
SIMD optimization. We do not include simdjson [20] in
the comparison, because it does not support JSONPath
queries directly; instead, queries have to be implemented
by hand using an on-demand API. From previous studies
we know that JSONSki performs better [19].

5.2. Datasets

In our experiments we use dataset from JSONSki as a
baseline to compare our implementation on their query
set. We excluse two queries of the dataset becaue (...).
We add two more diverse datasets, representing charac-
teristic usecase. purge twitter.json and include the one of
JSONSKi We integrate other dataset and queries to show-
case the performance improvement of The first one is the
twitter.json file extracted from simdjson’s quick-start
tutorial in the project’s repository [27]. It is a typical file
obtained by querying an API, small but irregular. Our
second dataset is an arbitrarily chosen fragment of the
datadump [9] of the Crossref service [8] collecting meta-
data of several hundred millions of scientific publications.
We restrict it to a smaller chunk for the sake of the ex-
periment. The document is highly regular: it contains
collections of sub-documents of very similar shape. Fi-
nally, our last dataset is a deep and highly irregular file:
it is the abstract syntax tree of a single large C file (23K
lines of code) obtained with clang. It falls within the
code-as-data application scenario (e.g. harvesting code
for AI [12]), gaining importance with the proliferation
of large code repositories and archives such as Software
Heritage [24]. Detailed characteristics of the datasets are
shown in Table 2; by verbosity we mean the ratio of the
size of the document to the number of nodes in the un-
derlying tree. All three datasets are accessible through
Zenodo [11]: AST [3], Crossref [1], Twitter [2].

5.3. Queries

The queries used in the experiments, shown in Table 3,
differ in selectivity and display diverse combinations of
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Table 3: Queries from JsonSki

ID Query Matches
B1 $.products[*].categoryPath[*].id
B2 $.products[*].videoChapters[*].chapter
B3 $.products[*].videoChapters
G1 $[*].routes[*].legs[*].steps[*].distance.text
G2 $[*].available_travel_modes
N1 $.meta.view.columns[*].name
N2 $.data[*][*][*]
T1 $[*].entities.urls[*].url
T2 $[*].text

Wa1 $.items[*].bestMarketplacePrice.price
Wa2 $.items[*].name

Wi $[*].claims.P150[*].mainsnak.property

Table 4: Rewriten query

ID Query
B1r $..categoryPath..id
B2r $..videoChapters..chapter
B3r $..videoChapters
G2r $..available_travel_modes
Wa1r $..bestMarketplacePrice.price
Wa2r $..name
Wir $..P150..mainsnak.property

child and descendant selectors. We run these queries
directly on JsonSurfer and simdpath, but for JSONSki
we need to reformulate them without descendant as it is
not supported (see Table ??). This is possible only for
some queries: A0 and A1 cannot be expressed without
descendant due to the highly irregular structure of the
AST dataset; C2 and T6 cannot be reformulated because
the matched nodes are at different depths. The reformula-
tion for T9 and T10 is simply T8. Let us stress that the
reformulations are not equivalent to the original queries in
general, they only return the same matches on the specific
datasets.

5.4. Setup

We use Rust Criterion [17] as the benchmarking harness.
A benchmark is executed as follows. First, a warm-up is
performed, ensuring that the low-level caches are filled for
the actual measurements. Measurements are performed
on a number of samples, each of which consists of many
iterations of the benchmarked routine. The mean exe-
cution time of all iterations is taken as a single sample.
Finally, collected samples are analysed to find the statisti-
cal distribution, outliers are detected, and a mean time is
reported. We calculate throughput based on that.

We ran JsonSurfer without any modifications via JNI4

[25]. For JSONSki we introduced a few technical tweaks
to integrate it with our Rust-based benchmark harness.

4The overhead introduced due to Rust-Java interop amounts to
nanoseconds per call, which is negligible considering the query ex-
ecution time are in the milliseconds range

Table 5: Other queries of interest

ID Query
A1 $..decl.name
A2 $..loc.includedFrom.file
A3 $..inner..inner..type.qualType
C1 $..DOI
C2 $.items[*].title
C2r $..title
C3 $.items[*].author[*].affiliation[*].name
C3r $..author..affiliation..name
C4 $.items[*].editor[*].affiliation[*].name
C4r $..editor..affiliation..name
C5 $.items[*].author[*].ORCID
C5r $..author..ORCID
O1 $.products[*].vitamins_tags
O1r $..vitamins_tags
O2 $.products[*].added_countries_tags
O2r $..added_countries_tags
O3 $.products[*].specific_ingredients[*].ingredient
O3r $..specific_ingredients..ingredient
Ts1 $..hashtags..text
Ts2 $.statuses[*].retweeted_status.entities.hashtags[*].text
Ts2r $..retweeted_status..hashtags..text
Ts3 $.search_metadata.count
Ts4 $..search_metadata.count
Ts5 $..count

First, we removed std::vector-based results gather-
ing in favour of a simple match counter. This slightly
increases the performance of JSONSki as compared to
the original [19]. Second, we fixed a few memory-
management issues that become apparent when running
the engine many subsequent times within the same pro-
cess. These were identified by running the executable
under Valgrind and are minor changes in constructor and
destructor code, with virtually no effect on the actual
query performance.

5.5. Hardware

Experiments were run in a stable environment, on ma-
chines hosted by Grid’5000, a federated testbed setup
providing a high diversity of architectures [14]. We show
the results for the Chetemi nodes which offer Intel Xeon
E5-2630 v4 CPUs (Intel Broadwell) with 256 GiB of
(8x16GiB) of 24000 MHz RAM. Plots for further archi-
tectures (Intel Skylake, Intel Cascade-Lake, AMD Zen 2)
can be found in the Appendix A.

5.6. Results

Figure 6 shows the throughput comparison of the three
tools. JsonSurfer consistently performs an order of mag-
nitude slower than both JSONSki and SIMDPath. (Let us
point out however, that it is the only of the three tools that
supports full JSONPath.) In the right-hand plot one can
observe several phenomena.
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Figure 6: Throughput comparison. Numbers on the bars indicate speedup with respect to JsonSurfer.

Queries A0, A1, C2, and T6 cannot be expressed with-
out descendant because of relevant labels appearing at
different levels, thus we do not run JSONSki on them.
A0 illustrates how fast one can go for highly selective
queries using the memmem acceleration described in Sec-
tion 3.5 (processing subdocuments rooted at decl labels
is fast because they are small). On A1 performance is very
low (only x4 speedup over JsonSurfer). This is because
inner labels are nested and the query is highly ambigu-
ous, which makes the depth-stack grow deep, as described
in Section ??. No good implementation for such queries
is known, even theoretically. The purpose of C2 is to test
the memmem acceleration in a very low selectivity situation.
As expected, performance is mediocre because repeated
calls to memmem result in numerous short fast forwards,
rather a few long ones. T6 is similar to A0 but it uses
two descendant selectors; SIMDPath performs well for
similar reasons.

On queries C3, C5 SIMDPath performs 3x times bet-
ter than JSONSki. Both C3 (high selectivity) and C5
(medium selectivity) can be expressed without descen-
dant, but less conveniently. Formulated with descendant
they run much faster on our engine.

Queries T8, T9, and T10 all return the same results,
but specify the access path less and less precisely. They
show that in our approach it is better to have the path
underspecified.

On T7 and T8 SIMDPath and JSONSki display similar
performance. T7 is similar to T6, restricted to one level
so that we can compare to JSONSki. While having the
whole path specifed could have helped JSONSki a lot, the
descendant approach is competitive, and more convenient
to the user. On T8 SIMDPath is competitive as well. If
we new how to find the next label at the same depth (a
sibling) we could do better, possibly closing the gap to
T9 and T10. Note that all of those queries return the same
results on this dataset.

Query C4 is hard for SIMDPath. JSONSki only ex-
amines author nodes at depth 3 while SIMDPath goes
through all author nodes (12x more), none of which
have ORCID, and each time look through the whole sub-
document searching for ORCID. We could improve our
performance on this query if we could fast-forward to

Table 6: Throughput [GB/s] on the Crossref dataset

Size [GB] 1 4 8 16
Broadwell 9.4 9.4 9.3 9.4
Skylake 9.6 9.4 9.3 10.0
Cascade-Lake 9.1 9.1 9.1 9.1
Zen 2 11.3 11.5 11.1 9.5

a given label within an element (see Section 4.6): this
would allow to quickly discard authors without ORCID.

To test the scalability of SIMDPath on various
architectures (see Appendix A), we ran the query
$..affiliation..name on fragments of the Crossref
dataset of increasing size (Table 6). We observed no
significant variation.

6. Looking ahead
We have demonstrated that it is possible to support descen-
dent queries in SIMD-accelerated JSONPath processing
without paying a penalty. Supporting wildcard and arrays
is compatible with our approach and we plan to imple-
ment it in near future. A grand challenge is supporting
filters. They are known to be highly incompatible with the
streaming model, not only drastically affecting memory
usage, but also making returning matches problematic
[5]. Another challenge is compositionality: processing
queries in succession, with the output of one query being
fed directly to another one.
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A. Additional experiments
The CPU information is available from the G5000 website [6]. The RAM information is extracted by the output of the
lshw command .

• CPU: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz (Broadwell)
• RAM: 8x16GiB DIMM DDR4 Synchronous Registered (Buffered) 2400 MHz

Figure 7: Broadwell (Chetemi): Throughput comparison

• CPU: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz (Skylake)
• RAM: 12x16GiB DIMM DDR4 Synchronous Registered (Buffered) 2666 MHz

Figure 8: Skylake (Chifflot): Throughput comparison

• CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz (Cascade-Lake)
• RAM:

– 12x32GiB DIMM DDR4 Synchronous Registered (Buffered) 2933 MHz
– 12x128GiB DIMM DDR4 Synchronous Non-volatile LRDIMM 2666 MHz

Figure 9: Cascade-Lake (Troll): Throughput comparison

15



• CPU: AMD EPYC 7352 (Zen 2)
• RAM: 8x16GiB DIMM DDR4 Synchronous Registered (Buffered) 3200 MHz

Figure 10: Zen 2 (Servan): Throughput comparison

B. JSONPath implementations – node and path semantics
Using the json-path-comparison project [7] we ran a comparison of existing implementations of JSONPath w.r.t.
node and path semantics, as described in 2. We used the example JSON from that section, with values shortened for
brevity:

{

"person": {

"name": "A",

"thesis": {

"name": "B",

"advisors": [

{

"person": {

"name": "C"

}

},

{

"person": {

"name": "D"

}

}

]

}

}

}

The query tested is $..person..name, which witnesses the difference between the semantics. Ignoring ordering, the
expected results are:
• ["A", "B", "C", "D"], for node semantics; or
• ["A", "B", "C", "D", "C", "D"], for path semantics.
The experiment is exactly reproducible – put the JSON document into a source.json file and execute, from the root
of json-path-comparison:

cat source.json | ./src/with_docker.sh ./src/one_off.sh '$..person..name';

C. Result tabular format
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Implementation Output Classification
Bash JSONPath.sh ["A", "B", "C", "D"] node
C json-glib ["A", "B", "C", "D"] node
Clojure json-path ["A", "B", "C", "D", "C", "D"] path
C++ jsoncons ["A", "B", "C", "D", "C", "D"] path
Dart json_path ["A", "B", "C", "D", "C", "D"] path
Elixir ExJsonPath ["A", "B", "C", "D", "C", "D"] path
Elixir jaxon ["A"] error
Elixir warpath ["A", "B", "C", "D", "C", "D"] path
Erlang ejsonpath ["A", "B", "C", "D", "C", "D"] path
Go PaesslerAG/jsonpath ["A", "B", "C", "D", "C", "D"] path
Go jsonslice [["A, B, C, D"], ["C"], ["D"]] path a

Go ojg ["C", "D", "C", "D", "A", "B"] path
Go oliveagle/jsonpath not supported error
Go ajson ["A", "C", "D", "B", "C", "D"] path
Go yaml-jsonpath ["A", "B", "C", "D", "C", "D"] path
Haskell jsonpath ["A", "B", "C", "D", "C", "D"] path
JavaScript Goessner ["A", "B", "C", "D", "C", "D"] path
JavaScript brunerd ["A", "B", "C", "D", "C", "D"] path
JavaScript jsonpath ["A", "B", "C", "D", "C", "D"] path
JavaScript jsonpath-plus ["A", "B", "C", "D", "C", "D"] path
Java jsurfer ["A", "B", "C", "D"] node
Java jsonpath ["A", "B", "C", "D", "C", "D"] path
Kotlin jsonpathkt ["A", "B", "C", "D", "C", "D"] path
Objective-C SMJJSONPath ["A", "B", "C", "D", "C", "D"] path
PHP Goessner ["A", "B", "C", "D", "C", "D"] path
PHP galbar/jsonpath ["A", "B", "C", "D"] node
PHP remorhaz/jsonpath ["A", "B", "C", "D"] node
PHP softcreatr/jsonpath ["A", "B", "C", "D", "C", "D"] path
Perl JSON-Path ["A", "B", "C", "D", "C", "D"] path
Python jsonpath ["A", "B", "C", "D", "C", "D"] path
Python jsonpath-ng ["A", "B", "C", "D", "C", "D"] path
Python jsonpath-rw ["A", "B", "C", "D", "C", "D"] path
Python jsonpath2 ["A", "B", "C", "D", "C", "D"] path
Raku JSON-Path ["C", "D"] error
Ruby jsonpath ["A", "B", "C", "D", "C", "D"] path
Rust jsonpath not supported error
Rust jsonpath_lib ["A", "B", "C", "D", "C", "D"] path
Rust jsonpath_plus ["A", "B", "C", "D", "C", "D"] path
Scala jsonpath ["A", "B", "C", "D"] node
Swift Sextant ["A", "B", "C", "D", "C", "D"] path
.NET Json.NET ["A", "B", "C", "D", "C", "D"] path
.NET JsonCons.JsonPath ["A", "B", "C", "D", "C", "D"] path
.NET JsonPath.Net ["A", "B", "C", "D", "C", "D"] path
.NET JsonPathLib ["A", "B", "C", "D", "C", "D"] path
.NET Manatee.Json ["A", "B", "C", "D", "C", "D"] path

Table 7: Semantics chosen by known JSONPath implementations. Node semantics is highlighted in dark grey. Light grey
indicates errors.

aDifferent output presentation, but clearly path semantics.
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dataset ID bench dataset file query result rsonpath jsonski jsurfer rsonpath/jsonski rsonpath/jsurfer

A1 ast decl_name ast ast/ast.json $..decl.name 35 16.219 None 0.120 0 134.770
A2 ast included_from ast ast/ast.json $..loc.includedFrom.file 482 13.779 None 0.120 0 114.374
A3 ast nested_inner ast ast/ast.json $..inner..inner..type.qualType 78129 0.733 None 0.115 0 6.360
B1 bestbuy_large_record BB1_products_category bestbuy_large pison/bestbuy_large_record.json $.products[*].categoryPath[*].id 697440 2.797 3.044 None 0.919 0
B1r bestbuy_large_record BB1’_products_category bestbuy_large pison/bestbuy_large_record.json $..categoryPath..id 697440 5.730 3.164 None 1.811 0
B2 bestbuy_large_record BB2_products_video bestbuy_large pison/bestbuy_large_record.json $.products[*].videoChapters[*].chapter 8857 2.438 2.630 None 0.927 0
B2r bestbuy_large_record BB2’_products_video bestbuy_large pison/bestbuy_large_record.json $..videoChapters..chapter 8857 12.520 2.745 None 4.561 0
B3 bestbuy_large_record BB3_products_video_only bestbuy_large pison/bestbuy_large_record.json $.products[*].videoChapters 769 0.919 0.721 None 1.273 0
B3r bestbuy_large_record BB3’_products_video_only bestbuy_large pison/bestbuy_large_record.json $..videoChapters 769 12.501 0.732 None 17.083 0

crossref0 scalability_affiliation0 8.644 None None 0 0
crossref1 scalability_affiliation1 8.605 None None 0 0

C3 crossref2 author_affiliation crossref crossref/crossref1.json $.items[*].author[*].affiliation[*].name 64495 2.780 2.818 0.194 0.986 14.350
C3r crossref2 author_affiliation_descendant crossref crossref/crossref1.json $..author..affiliation..name 64495 2.957 None 0.176 0 16.833
C1 crossref2 DOI crossref crossref/crossref1.json $..DOI 1073589 3.737 None 0.171 0 21.881
C4 crossref2 editor crossref crossref/crossref1.json $.items[*].editor[*].affiliation[*].name 39 2.664 3.055 0.193 0.872 13.832
C4r crossref2 editor_descendant crossref crossref/crossref1.json $..editor..affiliation..name 39 12.451 None 0.173 0 71.957
C5 crossref2 orcid crossref crossref/crossref1.json $.items[*].author[*].ORCID 18401 2.643 2.680 0.181 0.986 14.592
C5r crossref2 orcid_descendant crossref crossref/crossref1.json $..author..ORCID 18401 2.627 None 0.173 0 15.167

crossref2 scalability_affiliation2 93407 6.763 None None 0 0
C2 crossref2 title crossref crossref/crossref1.json $.items[*].title 93407 2.569 2.906 0.184 0.884 13.977
C2r crossref2 title_descendant crossref crossref/crossref1.json $..title 1716752 8.652 None 0.172 0 50.252

crossref4 scalability_affiliation4 90 8.599 None None 0 0
G1 google_map_large_record GMD1_routes google_map pison/google_map_large_record.json $[*].routes[*].legs[*].steps[*].distance.text 90 1.865 189582.471 None 0.000 0
G2 google_map_large_record GMD2_travel_modes google_map pison/google_map_large_record.json $[*].available_travel_modes 44 4.426 200797.250 None 0.000 0
G2r google_map_large_record GMD2’_travel_modes google_map pison/google_map_large_record.json $..available_travel_modes 8774410 12.949 202334.950 None 0.000 0
N1 nspl_large_record NSPL1_meta_columns nspl pison/nspl_large_record.json $.meta.view.columns[*].name 24 4.852 48342.693 None 0.000 0
N2 nspl_large_record NSPL2_data nspl pison/nspl_large_record.json $.data[*][*][*] 24 2.653 2.599 None 1.021 0
O2 openfood added_counties_tags openfood openfood/openfood.json $.products[*].added_countries_tags 5 5.114 3.812 0.141 1.341 36.300
O2r openfood added_countries_tags_descendant openfood openfood/openfood.json $..added_countries_tags 5 16.362 None 0.130 0 125.847
O3 openfood specific_ingredients openfood openfood/openfood.json $.products[*].specific_ingredients[*].ingredient 24 2.913 2.569 0.146 1.134 19.895
O3r openfood specific_ingredients_descendant openfood openfood/openfood.json $..specific_ingredients..ingredient 24 14.999 None 0.135 0 110.982
O1 openfood vitamins_tags openfood openfood/openfood.json $.products[*].vitamins_tags 10 2.149 1.782 0.140 1.206 15.376
O1r openfood vitamins_tags_descendant openfood openfood/openfood.json $..vitamins_tags 2 19.498 None 0.129 0 150.848
Ts1 twitter all_hashtags twitter twitter/twitter.json $..hashtags..text 1 12.862 None 0.241 0 53.386
Ts2 twitter hashtags_of_retweets twitter twitter/twitter.json $..retweeted_status..hashtags..text 1 6.141 3.803 0.241 1.615 25.510
Ts3 twitter metadata_1 twitter twitter/twitter.json $.search_metadata.count 1 4.943 4.448 0.260 1.111 18.997
Ts4 twitter metadata_2 twitter twitter/twitter.json $..search_metadata.count 88881 19.977 4.444 0.242 4.495 82.506
Ts5 twitter metadata_3 twitter twitter/twitter.json $..count 150135 23.564 4.446 0.243 5.300 97.162
T1 twitter_large_record TT1_entities_urls twitter pison/twitter_large_record.json $[*].entities.urls[*].url 15892 3.126 67875.876 None 0.000 0
T2 twitter_large_record TT2_text twitter pison/twitter_large_record.json $[*].text 15892 3.620 68213.286 None 0.000 0
Wa1r walmart_large_record WM1_items_price walmart pison/walmart_large_record.json $.items[*].bestMarketplacePrice.price 272499 4.109 4.362 None 0.942 0
Wa1r walmart_large_record WM1’_items_price walmart pison/walmart_large_record.json $..bestMarketplacePrice.price 272499 12.333 4.614 None 2.673 0
Wa2 walmart_large_record WM2_items_name walmart pison/walmart_large_record.json $.items[*].name 15603 3.471 4.127 None 0.841 0
Wa2r walmart_large_record WM2’_items_name walmart pison/walmart_large_record.json $..name 15603 3.821 4.249 None 0.899 0
Wi wiki_large_record WP1_claims_p150 wiki pison/wiki_large_record.json $[*].claims.P150[*].mainsnak.property 2.889 189251.257 None 0.000 0
Wir wiki_large_record WP1’_claims_p150 wiki pison/wiki_large_record.json $..P150..mainsnak.property 11.358 196451.681 None 0.000 0
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